
Jäger: Automated Telephone Call Traceback
David Adei

North Carolina State University

Raleigh, USA

dahmed@ncsu.edu

Varun Madathil

North Carolina State University

Raleigh, USA

vrmadath@ncsu.edu

Sathvik Prasad

North Carolina State University

Raleigh, USA

snprasad@ncsu.edu

Bradley Reaves

North Carolina State University

Raleigh, USA

bgreaves@ncsu.edu

Alessandra Scafuro

North Carolina State University

Raleigh, USA

ascafur@ncsu.edu

Abstract
Unsolicited telephone calls that facilitate fraud or unlawful telemar-

keting continue to overwhelm network users and the regulators

who prosecute them. The first step in prosecuting phone abuse

is traceback — identifying the call originator. This fundamental

investigative task currently requires hours of manual effort per call.

In this paper, we introduce Jäger, a distributed secure call trace-

back system. Jäger can trace a call in a few seconds, even with

partial deployment, while cryptographically preserving the privacy

of call parties, carrier trade secrets like peers and call volume, and

limiting the threat of bulk analysis. We establish definitions and

requirements of secure traceback, then develop a suite of protocols

that meet these requirements using witness encryption, oblivious

pseudorandom functions, and group signatures. We prove these

protocols secure in the universal composibility framework. We then

demonstrate that Jäger has low compute and bandwidth costs per

call, and these costs scale linearly with call volume. Jäger provides

an efficient, secure, privacy-preserving system to revolutionize tele-

phone abuse investigation with minimal costs to operators.
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1 Introduction
Telephone networks are inundated with unsolicited “robocalls” for

telemarketing or outright fraud. While individuals are bothered by

the seemingly constant ringing of the phone, government agencies,

enterprises, and non-profits now have greater difficulties reaching

stakeholders for legitimate, desirable purposes. Public outcry has

motivated policy makers, public officials, and phone providers to

all take actions [29, 42] meant to address the problem.

Prior to the recent spate of incessant robocalls, the Federal Trade

Commission (FTC) established the Telemarketing Sales Rule [32] to

set the bounds on what forms of automated calls are considered per-

missible. A general summary is that callers must have affirmative,

opt-in consent from the called party to dial them for commercial

purposes. The FTC also maintains a “do-not-call” list that should

prevent unsolicited calls to registered individuals. These measures

are legal, not technical, so violations are pursued through regulatory

action. These measures have clearly not been effective.

In late 2019, a sudden outbreak of bipartisanship struck the

United States Congress, who passed the TRACED Act to combat

illegal calling. Among other measures, the law further expanded

penalties for illegal calling and empowered regulators to make

substantial changes to network policy to reduce robocalls. These

changes to date have included requiring providers to register and

submit Robocall Mitigation Plans to the FCC, the mandatory block-

ing of calls claiming to originate from invalid numbers, encour-

aging the labeling of suspect calls by providers, setting deadlines

on participation in robocall investigations, and mandating that all

providers implement a call authentication mechanism known as

STIR/SHAKEN (S/S). S/S requires originating providers to sign out-

bound call requests to indicate their actual source, similar to DKIM,

expecting that it would allow regulators to identify the source of

the call, prevent caller ID spoofing, and give robocallers “no place

to hide.”

In practice, all of these efforts have failed to significantly change

the state of affairs. Call labelling is unreliable, robocallers have

moved to using legitimate numbers for a very short period, and

the majority of calls in the network arrive without a signature [69]

because pre-VoIP networks cannot be modified to support S/S.

Robocallers continue to operate for a simple reason: it is prof-

itable and low risk. While regulators and law enforcement have

been successful in winning judgements against accused robocall

operators, with fines into many millions of dollars, the defendants
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often return to their schemes under assumed identities or are re-

placed by other “entrepreneuers” using similar techniques. Because

the robocalling problem is so vast, it is reasonable to assume that

they will not face penalties given how painstaking it is to bring a

case against a single robocaller and how small the relevant agency

staffs are.

One of the biggest hurdles is identifying the source of a call. The

telephone network is a network-of-networks, like the Internet, and

a given call often passes through many networks before reaching its

destination. Routes change rapidly and unpredictably, and providers

routing the call only know the previous “hop” and the next “hop.”

Fortunately, providers keep meticulous records on calls they route

for billing or paying peers. To identify the source of a call, an

investigator must start at the destination with knowledge of the call

time, call destination, and claimed call source, and go hop-by-hop

until they reach the originator. This process is termed traceback.
Prior to 2019, a traceback, could take multiple subpoenas and

months to complete for a single call [11]. The 2019 TRACED Act

mandated the creation of a clearinghouse to handle tracebacks,

and it also mandated timely responses to traceback requests by

providers. The result was the creation of the Industry Traceback

Group (ITG) [42], and the FCC reported to Congress that currently

a traceback can be completed in under 24 hours with the help of

ITG.

Unfortunately, tracebacks are still largely manual, and the ITG

has a skeleton staff of a few employees. They are (rightfully) proud

that they manage to complete around 300 tracebacks per month,

though this is far from sufficient to deal with millions of robocalls

each month. It will certainly become a bottleneck if we want law

enforcement to target perpetrators of high-touch fraud schemes

like digital kidnapping, where a fraudster provides a convincing

story and fabricated voice of the loved one of a target to extort a

ransom.

Automation is needed to scale traceback to a significant fraction

of the current abuse, but simple approaches will be unacceptable to

some portion of current stakeholders. If each carrier were required

to implement an API for traceback, it runs the risk of a malicious

carrier fabricating incorrect responses. Note that some smaller car-

riers are known to skirt or outright violate laws for profit, including

facilitating illegal robocalls. If each provider were required to sub-

mit their call routing records to a central source, subscribers would

justifiably worry that their social networks and telephone activity

could be leaked. Providers would balk at revealing peering arrange-

ments and call volumes, and the central database would be a magnet

for curious intelligence agencies and law enforcement dragnets.

In this paper, we present Jäger
1
, a distributed system and protocol

suite to provide rapid, automated traceback for phone calls. To trace

an illegal call, an investigator will obtain the caller’s and recipient’s

telephone numbers along with precise timing details about the

call. This information is typically sourced from public complaints,

industry honeypots, the ITG’s data collection, consumer voicemails,

or other commercial channels. Jäger enables the investigator with

the call details to identify its originating network. The originating

1
Jäger, pronounced “YAYger,” is German for “hunter.” It can also refer to Jägermeister,

a popular liqueur, making it an appropriate name for a protocol to supplement S/S.

network can then be held liable or identify the customer responsible

for the illegal call.

The key insight is to allow traceback over encrypted call records,

with the caveat that only a party with detailed knowledge of the

call can identify or decrypt the routing records for a given call.

Our solution requires no modifications to the existing telephone

network. Instead, we assume access to the billing systems that al-

ready maintain the records we need. We do not require interaction

between providers at any point. The compute, storage, and band-

width costs for providers are modest and scale linearly with call

volume, so small carriers need few resources. We provide for cryp-

tographic mechanisms to ensure that authorized traceback users

can be appropriately rate-limited to prevent bulk abuse. Our system

is robust against a single provider on a call who fabricates or does

not submit a routing record for a call. Encrypted call records do

not reveal the provider who submitted them, but a provider who

submits an invalid or incorrect record can be identified. Because the

purpose of traceback is to identify the source of a call, we do not

actually need every routing record for a call to be present in Jäger.

Ideally, at least the first, originating record, will be present, but if

it isn’t, any other record will still improve traceback performance.

Our scheme will provide benefits even if some providers do not

participate, so it can be deployed incrementally.

We make the following contributions:

• We specify and define the key properties and requirements

for secure telephone call traceback.

• We design protocols that meet the requirements for secure

traceback, and implement them in a prototype distributed

system dubbed Jäger.

• We provide formal guaranties by proving the security of

these protocols in the Universal Composability (UC) frame-

work.

• We demonstrate that Jäger has low compute and bandwidth

costs per call, and these costs scale linearly with call volume.

In the process, we also develop a performant witness encryp-

tion library in C++. Code for that library and our full Jäger

implementation is available [1, 2].

Robocall enforcement is ultimately a legal problem, albeit with tech-

nical challenges. Jäger fills a technical need for effective investiga-

tive tools, though Jäger, cannot independently determine whether

a call was illegal. Nevertheless, because the telephone ecosystem is

heavily regulated, honest participation can be incentivized through

the risk of civil or criminal prosecution.

2 Background
This section discusses background information on the state of the

telephone network abuse and prosecuting violators. In doing so,

we described challenges with locating abuse actors.

2.1 Telephone Network Abuse
Phone network abuse is a global problem, with the United States

being one of the most severely affected countries. One of the most

common forms of abuse is pre-recorded automated bulk phone calls,

or robocalls. Many robocalls violate US law, including sales calls

made without affirmative opt-in. Fraudulent calls often impersonate

government officials and steal millions of dollars from victims.



Federal statues prescribe eyewatering financial penalties for

each and every illegal call, but penalties require enforcement to

deter abuse. Currently, phone abusers avoid prosecution by us-

ing spoofed or short-term telephone numbers, regularly changing

service providers, and altogether vastly exceeding available enforce-

ment resources.

Routing Phone Calls through the Network: Determining the

source of a single call currently requires significant investigative

effort, and part of the reason is that the phone network is a network-

of-networks with no global vantage point and no single end-to-end

authentication of identity.

A given telephone provider will connect with one or more other

providers to send and receive call traffic. When a subscriber places

a call, her provider “originates” the call and then uses a signalling

protocol to communicate with its peer networks to find a route

to the called party’s network. When the call is finally set-up, over

potentially many intermediate providers, the call is considered

“terminated” and the call audio will begin.

Call routes are selected considering carrier
2
charges, network

maintenance, and agreements with other carriers, and these factors

change moment-to-moment. Each provider that carries the call will

bill the provider who sent it, and Call Detail Records (CDRs) are

kept to support this. However, only the originating provider knows

any details about the call originator beyond the phone number the

subscriber claimed when they set up the call.
3
No provider ever

knows more about the call than the previous and next provider in

the route. To identify a party responsible for an illegal call, an inves-

tigator must first find the originating provider, which is unknown

to the terminating provider who delivered the call to its recipient.

Locating Abuse Actors: Authorities must find and prosecute per-

petrators responsible for generating illegal calls. In the United

States, the TRACED Act of 2019 [29] requires the FCC to man-

date the S/S caller authentication framework. Although in principle

S/S can be used to traceback illegal robocalls from their destination

to their origin, there are several limitations. Industry reports from

October 2023 estimate [69] more than half of all voice traffic in

the US is still not signed using S/S, making it impossible to track

the origin of such calls using S/S information alone. Industry in-

siders attribute this large portion of unauthenticated voice traffic

to legacy infrastructure that does not support S/S. Furthermore,

phone calls originating outside the US often do not contain S/S in-

formation since the framework is not mandated in other countries.

Therefore, regulators, enforcement agencies, and other entities rely

exclusively on manual traceback processes to identify the source

of illegal robocalls [26].

Manual Traceback Process: As the TRACED Act requires, the

FCC has designated the ITG [42] to serve as the central entity

to coordinate the traceback process. The ITG manages the labor-

intensive and time-consuming tasks of identifying the source of

suspected illegal robocalls. The ITG constantly monitors active

robocall campaigns using data from honeypots [57], consumer re-

ports, and other sources. After assessing the legality of the robocall,

2
In this work, we will use carrier and provider interchangeably.

3
Most businesses expect to be able to specify the “from” field shown for caller ID.

A common case is to allow a desk line to appear to be coming from the corporate

switchboard number, but this feature is abused by illegal callers.

the ITG initiates a traceback request and manually coordinates

across numerous carriers to pinpoint the source of suspected illegal

robocalls. The traceback process involves tracing the call path from

the terminating carrier through transit carriers and ultimately to

the originating carrier to identify the source of the call.

Traceback has proven to be a crucial tool for regulators and en-

forcement agencies to combat illegal robocalls. It has been used in

almost every enforcement action filed by regulators against robo-

calling operations. However, successfully completing a traceback

often takes several hours or days, with substantial effort from the

ITG and the participating carriers. The manual and time-consuming

nature of the traceback process significantly limits its effectiveness.

Although the volume of illegal robocalls targeting US subscribers is

estimated to be in the hundreds of millions per year, less than 3,000

tracebacks were completed over eleven months in 2022 [30]. By

developing an automated, secure, and scalable traceback system, we

can swiftly uncover the source of such calls, deter bad actors, and

empower stakeholders to protect phone users from illegal robocalls.

2.2 Cryptographic Primitives
This section introduces the cryptographic primitives that serve as

the building blocks for our protocol.

Witness Encryption Based on Signatures: A Witness Encryp-

tion scheme based on Signatures (WES) was recently proposed

in [47] and [24]. These are encryption schemes where the en-

cryption key is a tuple of a signature verification key (denoted

vk) and a string chosen by the encryptor (denoted ℓ). The de-

cryption key is a valid signature (denoted 𝜎) on the string, such

that the signature can be verified by the verification key. More

specifically, a witness encryption based on signatures has two al-

gorithms - WE.Enc,WE.Dec, where WE.Enc((vk, ℓ),𝑚) → ct, and
WE.Dec(𝜎, ct) →𝑚.𝑚 denotes the plaintext, (vk, ℓ) corresponds to
the encryption key, and 𝜎 = Sign(sk, ℓ) corresponds to the decryp-

tion key if Sign.Vf(vk, ℓ, 𝜎) = 1. Here Sign(· · ·) and Sign.Vf (· · ·)
are the sign and verify procedures for the signature scheme. We

acknowledge that using signature verification keys to encrypt mes-

sages and using signatures to decrypt ciphertexts is not intuitive,

and the notation can be confusing. Observe that we denote witness

encryption and decryption keys as tuples containing signing and
verification keys, while the signature keys are written as single

variables. [47] and [24] show that it is possible to construct such

WES schemes efficiently based on BLS signatures [15].

Group Signatures: Group signatures [4] are a cryptographic prim-

itive that allows group members to anonymously sign messages on

behalf of the group. A designated authority, the groupmanager, gen-

erates a common public key gpk and issues a unique group member

signing key gsk𝑖 for each group member 𝑖 . Any signature signed

by any gsk𝑗 in the group will verify with gpk. The group manager

can also deanonymize signatures and identify the signer. Group

signatures allow for anonymity while maintaining accountability.

Oblivious PRF: A pseudorandom function (PRF) 𝐹𝑘 is a keyed

function whose outputs look random to anyone without the secret

key 𝑘 . An oblivious pseudorandom function (OPRF) [20] is a two-

party protocol where a server holds a secret key 𝑘 for the PRF, and

a client holds a secret input 𝑥 to be evaluated. At the end of the



protocol, the client learns 𝐹𝑘 (𝑥) while the server learns nothing.

3 Problem Statement
We begin this section by identifying the major stakeholders and

adversaries impacting Jäger. We also specify the functional and

security requirements which we aim to achieve.

3.1 Stakeholders and Adversaries
The ecosystem involves various stakeholders with distinct roles

and interests, including service providers, the ITG, subscribers, and

law enforcement agencies. Each group’s goals and actions follow.

Providers: They route phone calls through the telephone network.

By law [53], they are required to maintain the CDRs of each call

and actively participate in the traceback process. They prioritize

efficient record insertion and complete and correct traceback re-

sponses. Providers also desire the confidentiality of their customers,

peering partners, and traffic volumes.

Subscribers: Subscribers initiate and receive phone calls. They

also report fraudulent calls to authorities or their service provider.

Subscribers seek to minimize receiving illegal robocalls and expect

confidentiality for their call records.

Industry Traceback Group: The ITG oversees the tracing of ille-

gal calls to their source by working with providers. They prioritize

swift and accurate responses to traceback requests.

Regulatory and LawEnforcement Agencies (LEAs): LEAs work
in conjunction with industry stakeholders to maintain secure and

lawful communication networks. Their responsibilities include in-

vestigating suspected illegal calls, enforcing compliance, public

education, and policy development. LEAs often submit traceback

requests to the ITG, emphasizing the need for a timely response.

Adversaries: Adversaries may seek partial or full call records of

one, many, or all subscribers. They may also seek privileged infor-

mation about providers or the network structure. Theymay also aim

to violate the integrity or availability of Jäger to prevent detection

or investigation of illegal calls. Adversaries can include outside par-

ties like private investigators[38], identity thieves, or even foreign

intelligence agencies[31]. Insiders, including subscribers, providers,

regulators and LEAs, and operators of Jäger entities may also be-

have dishonestly at any point. We design Jäger such that no single

compromised entity alone can violate its security properties, and

in many cases Jäger is resilient against collusion by more than one

malicious entity.

3.2 Requirements
The main objective of Jäger is to enable secure and efficient trace-

back given a valid request containing source and destination tele-

phone numbers along with the call timestamp.

Functional Requirements: To achieve this objective, the system

is designed with the following key requirements:

(1) Resilience: A valid traceback request returns all available

records for a call.

(2) Precision: A valid traceback request only returns relevant

records. Malicious or incorrect records are still “relevant” if

they match the traceback request.

(3) Scalability: Jäger must handle effectively arbitrary call vol-

umes. For all entities, cost should scale linearly in the number

of calls and/or participants (as appropriate).

(4) Efficiency: All operations should perform comparably to sim-

ilar non-secure approaches. The financial costs should be a

minor fraction of the total network revenue.

(5) Information Gain: Every traceback request should provide

information to an investigator. A traceback request will result

in one or more of the following:

(a) Identify the originating provider for the call.

(b) Reveal at least one claimed non-originating provider and

shorten manual traceback.

(c) Provide direct evidence that one or more providers act in

bad faith (e.g., submitting false or contradictory records

or no records for a call).

In settings where Jäger is mandatory, all of these properties

are obvious. Either one obtains a complete and consistent

traceback, or at least one provider is violating the mandate.

In partial deployment, these properties will still hold if at

least one on-path provider participates.

Security Requirements: The guiding principle of secure trace-

back should be that no entity gains information about subscribers

or providers in the absence of an authorized traceback request,

even in the presence of a compromised Jäger entity. Additionally,

no entity can provide false information without risk of detection

and accountability. More formally, this mandates the following

principles:

(1) Trace authorization: An entity can only trace a call they have
definite knowledge of, and they must also have explicit au-

thorization from a third party.

(2) Call confidentiality: No entity should determine source, des-

tination, time, or route details about a call they do not already

have without authorization for a traceback.

(3) Trade secret protection: No party should learn aggregate in-

formation about a provider’s call volumes and peering rela-

tions except those revealed by an authorized, valid traceback

or an authorized accountability request.

(4) Record integrity: Only authorized parties may contribute

records.

(5) Record accountability: It must be possible to identify the con-

tributor of a traceback record.

4 Our Approach
In the previous section, we specified requirements for secure trace-

back. To show how Jäger satisfies those requirements, in this section

we will describe a functional but insecure strawman solution and

iteratively improve it until it meets all of the security requirements.

4.1 Jäger Overview
An Insecure Strawman Approach: To enable traceback, we first

introduce a central Record Store(RS) that collects and stores Call

Detail Records (CDRs) from providers in a databaseD. Any provider

𝑃𝑖 in a call path, for instance, 𝑃1 → 𝑃2 → 𝑃3 → 𝑃4, already keeps

a CDR for each call they originate, transmit, or terminate. We

model a CDR as a tuple (𝑠𝑟𝑐 , 𝑑𝑠𝑡 , 𝑡𝑠𝑖 , 𝑃𝑖−1, 𝑃𝑖 , 𝑃𝑖+1) and further



divide it into two parts: call-details = (𝑠𝑟𝑐 ∥𝑑𝑠𝑡 ∥𝑡𝑠𝑖 ) and hop =

(𝑃𝑖−1∥𝑃𝑖 ∥𝑃𝑖+1), where in call-details, 𝑠𝑟𝑐 and 𝑑𝑠𝑡 are source and

destination telephone numbers common to all providers in the call

path, 𝑡𝑠𝑖 (unique to 𝑃𝑖 ) is the time at which 𝑃𝑖 receives the call and

hop = (𝑃𝑖−1∥𝑃𝑖 ∥𝑃𝑖+1) are the previous hop, current hop and next

hop respectively. Phone call setup takes time to traverse through

the network, and we assume an upper-bound setup time 𝑡max. Any

CDR pertinent to the same call will have a 𝑡𝑠∗ in the range of

[𝑡𝑠𝑖 − 𝑡max, 𝑡𝑠𝑖 + 𝑡max].
To enable traceback, each provider 𝑃𝑖 contributes by sending

command (CONTRIBUTE, 𝑃𝑖 , call-details, hop) to the RS. The RS will
then add the record to their database D. Later, if a party wishes to

trace a certain call with call-details = (𝑠𝑟𝑐 ∥𝑑𝑠𝑡 ∥𝑡𝑠𝑖 ), they can send

the command RETRIEVE-REQ to RS, who will fetch all hops that

have call-details = (𝑠𝑟𝑐 ∥𝑑𝑠𝑡 ∥𝑡𝑠∗), ∀𝑡𝑠∗ ∈ [𝑡𝑠𝑖 − 𝑡max, 𝑡𝑠𝑖 + 𝑡max].
Modeling a hop𝑖 for a provider 𝑃𝑖 as (𝑃𝑖−1∥𝑃𝑖 ∥𝑃𝑖+1) allows 𝑃𝑖

attest to their upstream and downstream provider’s involvement

in the call. This means that given a hop
2
from only 𝑃2, we know

the path 𝑃1 → 𝑃2 → 𝑃3, so a traceback does not necessarily re-

quire records from 𝑃1 and 𝑃3. This design decision helps in partial

deployment.

In the event of conflicting hops, for e.g., say 𝑃2 submits hop
2
=

(𝑃1∥𝑃2∥𝑃3) indicating 𝑃1 and 𝑃3 as its previous and next hops. 𝑃1
submits hop

1
= (𝑃4∥𝑃1∥𝑃3). 𝑃3 submits hop

3
= (𝑃1∥𝑃3∥𝑃6). In this

case, an investigator cannot tell if 𝑃2 is misbehaving or 𝑃1 and 𝑃3
are misbehaving. Therefore the investigator will go to each of these

providers and have them show their corresponding call records to

identify and punish the misbehaving provider(s).

This strawman solution trivially meets the functional require-

ments of the system, but none of the security requirements we

described in Sec. 3.2. Indeed, since records are stored in the clear

for RS, no confidentiality is guaranteed to subscribers or providers.

Furthermore, traceback could be done by any party with access to

the records.

Toward Record Confidentiality: To achieve record confidential-

ity, the first natural step is to encrypt the call-details and the hop.
Assume all providers use a shared public key (pk) to encrypt the hop
and call-details using an IND-CPA secure encryption scheme. This

means that RS will store a set of ciphertexts, and hence cannot learn

anything about the CDR content. This guarantees the confidential-

ity of the records but unfortunately prevents the tracing process.

Suppose an authorized party 𝑃 𝑗 wants to trace call call-details =
(𝑠𝑟𝑐 ∥𝑑𝑠𝑡 ∥𝑡𝑠 𝑗 ), they must send an encryption of call-details under
pk to RS. However, the RS cannot find a matching record in the data-

base, since the encryption scheme is not deterministic. Alternatively,

the RS sends all the ciphertexts in the database to 𝑃 𝑗 , and the latter

decrypts each ciphertext until it finds the call records pertinent to

their call. This approach is inefficient and loses call confidentiality

for other calls. To solve this problem, we introduce a deterministic

index to identify ciphertexts related to a given call-details. Now
upon receiving this index, the RS can return exactly one ciphertext

to the provider. We elaborate on this below.

Adding Pseudorandom Labels to the Database: To identify the

correct ciphertexts, we index each entry with a label, call-label,
that can be computed only with the knowledge of call-details.
When a provider 𝑃𝑖 sends their contribution, they will send a pair

(call-label𝑖 , 𝑐𝑡𝑥𝑖 ) to the RS where 𝑐𝑡𝑥𝑖 is an encryption of hop𝑖
by 𝑃𝑖 . Later, when a party 𝑃 𝑗 wants to trace a call call-details =

(𝑠𝑟𝑐 ∥𝑑𝑠𝑡 ∥𝑡𝑠 𝑗 ), they can use this information to compute call-label,
and RS will be able to identify the 𝑐𝑡𝑥 that is indexed with call-label.
Note that 𝑃 𝑗 will compute all call-label∗ for call-details = (𝑠𝑟𝑐 ∥𝑑𝑠𝑡 ∥𝑡𝑠∗)
∀𝑡𝑠∗ ∈ [𝑡𝑠 − 𝑡max, 𝑡𝑠 + 𝑡max] to retrieve all possible ciphertexts that

belong to the call as specified earlier.

What function should we use to compute call-label? Perhaps the
most natural candidate would be a hash function, i.e., call-label =
𝐻 (call-details). However, this approach jeopardizes the confiden-

tiality of the records once again. Indeed, anyone who gets access

to the database D maintained by RS can “check” if a certain call

(𝑠𝑟𝑐 ∥𝑑𝑠𝑡 ∥𝑡𝑠) took place by simply computing the hash of the call

details and checking for that label in D. Adding a large nonce as

input to the hash function i.e. call-label = 𝐻 (call-details∥𝑛𝑜𝑛𝑐𝑒) is
not helpful since during trace the provider will have to guess the

nonce and this is infeasible in polynomial time.

This attack suggests that the label should not be computed us-

ing a public function that anyone can compute. Pseudorandom

Functions (PRF) are the perfect candidate. They are determinis-

tic, just like hash functions, but they can be evaluated only with

the knowledge of a key. A label can be computed as call-label =
𝐹𝑘 (call-details), where 𝑘 is a key known only by the providers and

𝐹 is a PRF. Hence, no one else, except carriers, can compute labels.

However, this solution is not robust in our threat model, where RS

could collude with providers . Indeed, it would be sufficient for only

one provider to leak the PRF secret key 𝑘 to expose records.

We solve this problem using a cryptographic tool called an Obliv-

ious PRF [20] (OPRF). In an OPRF, the PRF is evaluated through a

protocol between two parties: a server, who knows the key 𝑘 , and a

client, who knows the input 𝑥 . At the end of the protocol, the client

learns only the output of the PRF, while the server learns nothing.

In our system, we introduce a new party called the Traceback Au-

thority (denoted TA), which holds the secret key of the PRF and

allows the providers to evaluate the PRF to compute labels. The TA,

however, does not learn anything about the call-details.
To contribute a record, 𝑃𝑖 will interact with the TA to compute

call-label𝑖 from call-details, and then compute idx𝑖 = 𝐻 (call-label𝑖 ).
Next, 𝑃𝑖 will encrypt the hop𝑖 under pk into 𝑐𝑡𝑥𝑖 (as specified ear-

lier) and submit (idx𝑖 , 𝑐𝑡𝑥𝑖 ) to RS. The lookup index idx𝑖 is a hash
of the call-label𝑖 so that if a record and/or the OPRF key is ever

compromised, the call-label𝑖 is not directly exposed.

Traceback would work as follows: An authorized party 𝑃 𝑗 who

wants to trace call-details first obtains the label call-label𝑗 from TA,

then sends idx𝑗 = 𝐻 (call-label𝑗 ) to RS. RS will use idx𝑗 to identify

and return the corresponding ciphertext.

However, there is still a problem: Recall that all ciphertexts are

encrypted under the same key. Thus any provider (potentially unau-

thorized) colluding with the RS can potentially decrypt all cipher-

texts trivially. Conversely, if each provider encrypts its record using

a unique key, the party attempting to perform a traceback will

obtain ciphertexts under different keys, requiring all providers to
help with decryption. This defeats the purpose of the system.

Towards Encrypting Records: One potential solution is to have

providers encrypt using the TA’s public key. Thereafter, during

the traceback, the provider retrieves the ciphertexts from the RS



and interacts with the TA to decrypt the ciphertexts. While this

is a viable solution, we want to formally enforce the following

properties:

(1) Knowledge of call: A party can trace a call only if they were

part of the call i.e they already know the call-details. The
party must be a provider in the call path.

(2) Trace Authorization:Aparty can trace a call only if theywere

authorized by the TA to trace that particular call.

To this end we use an asymetric encryption scheme called “wit-

ness encryption” that allows carriers to encrypt the hop such that

only with the knowledge of the call-details and an authorization

from the TA can they decrypt the ciphertext. In witness encryption,

the encryption key is a verification key vk for a signature scheme

and an arbitrary string ℓ (chosen by the encryptor). A ciphertext

can be decrypted only with the knowledge of the string ℓ and a

signature on ℓ that verifies under vk. In our case, we replace ℓ

with call-label to enforce property (1). We enforce property (2) by

requiring a signature on call-label signed by the TA.

Now to contribute records, 𝑃𝑖 will compute call-label𝑖 , idx𝑖 =

𝐻 (call-label𝑖 ) and encrypt hop𝑖 using (vk, call-label𝑖 ) as the en-

cryption key. Then 𝑃𝑖 will send (idx𝑖 , 𝑐𝑡𝑥𝑖 ) to RS. Using hash digests
as indices instead of call-labels further enforces property (1) above.

Since the RS is not part of the call path, it should not know the

call-label.
Once the ciphertexts are retrieved from the RS, 𝑃𝑖 must request

authorization from the TA, in our case, a signature on call-label.
This construction ensures that a ciphertext related to a call can be

decrypted only by someone who knows a valid signature on the

corresponding call-label.

Adding Carrier Anonymity and Accountability: Recall that to
contribute, each provider sends authenticated encrypted records

signed under their unique public key to RS. The RS can map their

contributions to their identity, potentially learning trends about

their activities. On the other hand, we cannot simply have the

provider submit their records anonymously since we still need to

hold them accountable for malformed or falsified contributions.

To protect carriers’ business privacy but hold them accountable,

we replace the regular signature scheme (used for authentication)

with an anonymous group signature scheme.

Group signatures are anonymous signatures that can be vali-

dated on behalf of a group – in our case, the group of all carriers.

More importantly, we choose group signatures instead of prim-

itives like ring signatures because group signatures are efficient

and allow us to trace traitors. Here, we use group signatures only

for authenticating contribution requests and not for the witness

encryption scheme.

In our system, the TA plays the role of the group manager and

adds carriers to the group by assigning them group secret keys.

Moreover, the TA is also responsible for the deanonymization of the

group signatures in case any of the carriers submit bad requests.

Network Layer Anonymity: The group signature scheme for

authenticating contribution requests guarantees anonymity at the

application layer. Unfortunately, network features like IP addresses

may still identify providers. There are a number of solutions to

this problem that are orthogonal to Jäger, including proxy services

like commercial VPNs. A provider may still be concerned that IP

traffic volume might leak information about call volumes to the

proxy. Providers can address this issue by splitting their traffic

across multiple proxy services and/or transmit redundant or invalid

records as cover traffic.

4.2 Threat Model and Resiliency
Jäger mandates the security requirements outlined in Sec 3.2. The

Jäger system includes two entities besides providers: the RS and

the TA. We assume that the RS and the TA do not collude and only

one of the two entities may be malicious. We also allow collusion

between providers and the corrupt entity. We show that even when

the RS is malicious and is colluding with providers, none of the

security requirements are violated. On the other hand, when the

TA is corrupt, Jäger cannot guarantee record accountability.

We can improve the trustworthiness of the TA with several

orthogonal techniques, described below. All of these options are

feasible, but they add complexity and cost.

Splitting responsibilities: In the architecture of Jäger, the TA is

responsible for group management, label generation, and authoriz-

ing traceback. Assigning these jobs to different entities will limit

the damage should one be compromised, and our prototype actually

already implements them independently.

Distributing Trust: Each of the operations can also be split among

multiple entities using existing multiparty computation schemes, in-

cluding threshold constructions of OPRFs[9, 43], group signatures[18,

33], and BLS signatures for use in Witness Encryption.

4.3 Frequently Asked Questions
In this section, we address some of the frequently asked questions

that we have encountered.

If S/S automates traceback, why go through all this trouble?:
The Public Switched Telephone Network (PSTN) is heterogeneous.

Legacy infrastructure drops S/S signatures along the call path, mak-

ing it ineffective for tracing call origins [11]. Call requests are

signed by providers using a JSON Web Token in the SIP INVITE

message with an x5u field pointing to the signing certificate. Mali-

cious providers can exploit this by setting x5u to a timing-out link,

increasing latency and forcing call transmission, posing a challenge

for providers. Traceback attempts using such signatures reach dead

ends, so manual processes are still needed. Additionally, the deploy-

ment of S/S remains limited. According to the Robocall Mitigation

Database in the US (Feb 7, 2024) [25], among 7,109 providers, only

39.94% have fully implemented it, 23.96% are partially implemented,

and 36.11% have no or unknown implementation status. We clar-

ify that Jäger does not authenticate caller ID or block robocalls in

real-time. Instead, it is a central repository of encrypted CDRs for

traceback purposes.

Why can’t we just put traceback info in headers: Implementing

traceback information in headers faces the same hurdles as S/S.

Why develop a new protocol instead of automating the man-
ual tasks done by groups in ITG?: The ITG currently main-

tains a semi-automated traceback system that sends notifications



to providers who are mandated to respond within 24 hours. Au-

tomating the current traceback tasks will require all providers to

implement a traceback API that integrates with the ITG systems.

While this automates the process, the gain on “traceback through-

put”, the number of computable traceback requests per month,

remains low as the process is still serial and involves providers

active participation for every traceback request. Tracebacks would

run into dead-ends if a single provider does not cooperate, their

portal goes down, responds with misleading information, or partial

deployment.

For providers, this alternative adds an additional cost of main-

taining an inbound traceback system. An adversary could exploit

vulnerable API implementations of this mandate to access affected

providers’ sensitive data. Note that compromising a carrier’s API

server exposes its peers and network trends as well as subscriber

call history, and well-funded companies who use industry best-

practices are regularly breached. We designed Jäger as a centralized

distributed system to alleviate serial traceback lookups, enabling

providers to be passive entities rather than active for traceback

computation. This design choice not only enhances the traceback

throughput but also centralizes security management from several

thousand providers to two organizations responsible for oversee-

ing Jäger. Moreover, if any single Jäger entity is compromised, no

plaintext data is leaked.

Why require participation from all providers if only the
originating provider’s records are needed?: If only originating

providers submit records, traceback fails because malicious carriers

likely won’t comply. Limiting submissions to the originator and

second hop is infeasible because providers cannot determine their

sequence in the call path. Thus, requiring all providers to submit

records becomes essential to trace back and identify people facil-

itating bad calls. Having the ability to construct the full call path

has added advantages such as trace-forwards to debug call routing

or blocking errors.

Who will operate the TA and RS?: The telephone network is the

ideal environment for Jäger because regulators like the FCC already

designate trusted third parties that provide singleton functions. Ex-

amples include toll-free numbering, local number portability (LNP)

databases, S/S certificate authority governance, and the current

traceback clearinghouse, ITG. The FCC periodically solicits appli-

cations to serve as these entities and a fair and competitive process

among several for-profit enterprises follows. The selected entities

can then charge reasonable fees for the service they provide.

For Jäger, there are two entities to recruit. The RS roughly cor-

responds to an entity like the LNP databases, and many vendors

have the technical ability to serve in this role. The TA performs

functions similar to the current ITG, like registering providers to

their system and determining if a traceback query is appropriate,

so modifying that existing role would provide a straightforward

on-ramp to deployment.

What if providers refuse to participate?: Jäger must be man-

dated to be effective. Regulation can compel providers to participate

or have their network access revoked. Unlike S/S, Jäger is compati-

ble with all network technologies in use.

TA

Providers
RS

- Store records
- Traceback queries

Trace traitors
Authorize Trace

Generate Labels

Contribute/Trace

- Trace traitors
- Issue group keys
- Revoke mem. keys

Membership

- Generates signatures 
- Authorizes traceback

Authorization

- Generates labels

Label Generation

Figure 1: Jäger facilitates efficient and rapid traceback
through collaborative efforts. Providers engage with the TA
to secure membership, create labels, and acquire trace au-
thorizations. Additionally, carriers send(receive) encrypted
records to(from) the RS

Table 1: Notation used in the protocol

Notation Description
RS Record Store

TA Traceback Authority

𝑃𝑖 A carrier

𝑠𝑟𝑐 Telephone number of call initiator

𝑑𝑠𝑡 Telephone number of call recipient

𝑡𝑠𝑖 Time call reached provider 𝑃𝑖
call-details Defined as 𝑠𝑟𝑐 ∥𝑑𝑠𝑡 ∥𝑡𝑠
hop𝑖 Hop submitted by 𝑃𝑖 defined as 𝑃𝑖−1 ∥𝑃𝑖 ∥𝑃𝑖+1
call-label A label for a call

5 System and Protocol Design
In this section, we discuss Jäger’s system architecture and detailed

protocol.

5.1 Jäger Architecture
Figure 1 shows a high-level diagram of Jäger’s system architecture.

There are three kinds of entities in our system:

Carriers Pi: A carrier 𝑃𝑖 receives calls from either the source (𝑠𝑟𝑐)

or from a previous carrier (𝑃𝑖−1) and forwards the call to either the

destination (𝑑𝑠𝑡 ) or the next carrier 𝑃𝑖+1. A call is identified by its

call-details = (𝑠𝑟𝑐 ∥𝑑𝑠𝑡 ∥𝑡𝑠) where 𝑡𝑠 is the time at which the call

reaches the carrier.

Record Store (RS): The RS maintains a database that stores en-
cryptions of the hops associated with a call. Recall that a hop is a

tuple hop := (𝑃𝑖−1∥𝑃𝑖 ∥𝑃𝑖+1).
Traceback Authority (TA): The TA has the following functions:

• Authorizing Trace Requests: The TA provides the signatures

that enable a carrier to decrypt records retrieved from the

RS. These signatures are computed on the call labels.

• Managing Providers’ Anonymous Authentication: The TAman-

ages the group signatures for the carriers. This consists of

adding legitimate providers to the group and providing them
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(ski, vki) Sign.KGen(1�)

Send (Join, Pi)

Send (vki)

Send (vki)

D = ;
(skRS, vkRS) Sign.KGen(1�)

Send (vkRS)

Send (vkRS)

(skT , vkT ) Sign.KGen(1�)

(gpk, info0) GKGen(1�)

kOPRF  {0, 1}�, pkOPRF = gkOPRF

(skR, vkR) Sign.KGen(1�)

Send (vkT , vkR, gpk)

Receive (gski, gpk, pkOPRF, vkT , vkR)

Figure 2: During setup protocol, TA generates and announces
public parameters. Providers request group membership and
are assigned member secret key upon acceptance by the TA

with credential to sign on behalf of the group. The TA is re-

sponsible for accountability, it can deanonymize signatures

in case of misbehavior and hold the corresponding entity

responsible.

• Generating Pseudorandom Labels: The TA interacts with car-

riers to compute call-labels.

5.2 Protocol Overview
Jäger consists of four protocols: Setup, Contribution, Trace, and
Provider Accountability, which we describe in detail below.

Cryptographic Primitives: As discussed in Sec. 2.2, Jäger uses a

witness encryption scheme for signatures (WES)[24, 47], a group

signature scheme[16], an oblivious PRF protocol[43], signature

schemes, and a hash function. The notations used in our proto-

cols are described in Table 1. We present the protocol in detail in

Appendix B. Below we present an overview of the protocol.

Setup Protocol: The Setup protocol is described in Fig. 2. This

protocol is run by the TA and carriers to set up their keys.

TA Setup: The TA sets up (1) the group with a group master key

and secret key. (2) the PRF key for the oblivious PRF and announces

a public key (denoted pkOPRF) corresponding to the PRF key. (3)

two signature key pairs (sk𝑇 , vk𝑇 ) and (sk𝑅, vk𝑅) and announces

vk𝑇 and vk𝑅 to all entities. Here, signatures using sk𝑇 will be used

to decrypt the witness encryption ciphertexts, and sk𝑅 will be used

to authorize trace requests.

Carrier Pi Setup: Each provider (denoted 𝑃𝑖 ) joins the system

by first interacting with the TA to get a distinct group signing

key gsk𝑖 , which they can use to sign anonymously on behalf of

the group. They generate a regular signing key pair (sk𝑖 , vk𝑖 ) for
authenticated communication with the TA and RS (during trace).

Finally the RS initializes a database D and sets up a signature

key pair (sk𝑅𝑆 , vk𝑅𝑆 ) and announces vk𝑅𝑆
Contribution Protocol: Providers record the hops with the RS

using the Contribution protocol. We consider the case of submitting

a single hop to the RS in Fig. 3. Each provider in the call path parses

the CDR into call-details = (𝑠𝑟𝑐 ∥𝑑𝑠𝑡 ∥𝑡𝑠) and hop = 𝑃𝑖−1∥𝑃𝑖 ∥𝑃𝑖+1
as defined in Sec 4. To contribute call records, the provider 𝑃𝑖

RSCarrier Pi

Receive (Pi, call-label)

Send ((ct1, ct2), idx, �)

Send (OPRF-EVAL, Pi, srckdstkep)

TA

ct1 = WE.Enc((vkT , call-label), key)

key {0, 1}�, idx = H(call-label)

ct2 = HO(srckdstkepkkey) � (Pi�1kPikPi+1)

if Verifyoprf (call-label) = 0 then abort

� = Sign(gski, ((ct1, ct2), idx))

Else D = D [ {((ct1, ct2), idx, �)}
if Verify(gpk, (idx, (ct1, ct)), �) = 0, then abort

Figure 3: In contribution protocol, provider submits cipher-
texts, compliant with the protocol, to the Record Store

anonymously submits a witness encryption of the message hop =

(𝑃𝑖−1∥𝑃𝑖 ∥𝑃𝑖+1) to RS, with a pseudorandom label associated with

it and a group signature for authentication. The ciphertext and the

label leak no information about the call thus providing confidential-

ity of the call, and the group signature leaks no information about

the provider sending this information, thus providing anonymity

to the carrier. We elaborate on how the label, the encryption, and

the signature are computed below.

The Contribution protocol consists of two phases: the label gen-

eration phase and the submission phase. In the label generation

phase, the label is computed with the help of the TA, using an

oblivious PRF protocol. The TA acts as a server and holds a PRF key,

and the provider acts as a client with the input. We assume that

each 𝑡𝑠 is associated with an epoch, 𝑡𝑠 truncated to nearest centisec-

ond, denoted ep. The provider uses call-details = (𝑠𝑟𝑐 ∥𝑑𝑠𝑡 ∥𝑒𝑝) as
input and the output of the protocol (denoted call-label) is learned
only by the provider. We note that with the help of pkOPRF, the
provider can compute an efficient pairing check to verify that the

output received from the TA is indeed correct, and that the PRF

key 𝑘 was used to compute the call-label as detailed in Fig. 9. The

provider then computes idx = 𝐻 (call-label). Recall that idx is used
instead of call-label to index the ciphertexts to prevent the TA from

trivially decrypting all ciphertexts in the case that the database of

ciphertexts and call-labels are leaked.
In the submission phase, the provider prepares the encryption

as follows. 𝑃𝑖 samples a 𝜆-bit uniform key from {0, 1}𝜆 and en-

crypts key with the WES scheme using (vk𝑇 , call-label) as the en-
cryption key to get a ciphertext 𝑐𝑡1. The WES scheme ensures

that the ciphertext can only be decrypted using a signature on

call-label signed using sk𝑇 by the TA. 𝑃𝑖 further computes ct2 =

hop ⊕𝐻 (call-details∥key), where 𝐻 is modeled as a random oracle.

Note that we require call-details as input to the hash function to

extract the call-details in the proof of security. Finally, the provider

signs the message ((𝑐𝑡1, 𝑐𝑡2), idx) using the group signature scheme,

obtains 𝜎 , and sends the resulting tuple ((𝑐𝑡1, 𝑐𝑡2), idx, 𝜎) to the RS.

Upon receiving a submission request, RS validates the group signa-

ture 𝜎 and stores the tuple in the database; if verification fails, the

request is dropped.

Trace Protocol: To trace a call, the provider must retrieve all

the hops corresponding to a call from the RS. Fig. 4 illustrates the



sequence of events in the trace protocol. Initially, the provider needs

to obtain the labels corresponding to these calls. For this purpose,

the provider computes the labels with the assistance of the TA using

the OPRF protocol described above. We assume an upper limit 𝑡max
on the duration of a call setup from the source to the destination.

The provider computes epochs ep corresponding to the timestamps

𝑡𝑠∗ ∈ [𝑡𝑠 − 𝑡max, 𝑡𝑠 + 𝑡max] and computes the labels associated with

the call-details for each of these epochs.

Before we describe how the provider gets the full trace, we note

that a malicious provider colluding with the RS could potentially

compute labels on arbitrary call-details and check with RS if such

labels exist in the store, revealing information about the existence

of a call between a certain initiator and recipient. If the provider

attempts to perform this attack for a specific initiator and recipient,

we call it a “targeted attack”. If the adversary’s goal is to map the

network by trying to compute labels on arbitrary call-details, we
refer to such attacks as “grinding attacks”. To mitigate the grinding

attack, we implement rate-limiting on the number of requests a

provider can make. For this purpose, when the provider interacts

with the TA to compute a call-label, the TA maintains a count of

requests made by a provider and will not authorize further requests

if a certain limit is exceeded. To give authorization on this request,

the TA will sign idx = 𝐻 (call-label) using sk𝑅 , and this signature

𝜎𝑅 serves as an authorization for traceback. Moreover, consider the

case that the TA is malicious (and the RS is honest) and is colluding

with a provider, then they can easily mount the grinding attack

described above by computing arbitrary labels and requesting the

corresponding idx from the RS. To mitigate this, we will also require

the RS to implement rate-limiting on trace requests. This will ensure

that a provider colluding with a TA cannot mount grinding attacks.

The provider requests the RS for the ciphertexts correspond-

ing to the idx. The RS first checks that the signature 𝜎𝑅 is verifi-

able using vk𝑅 . It rejects the request if this is not the case. The

RS identifies the ciphertexts corresponding to the idx in D and

sends ct1, ct2, idx, 𝜎𝑅𝑆 , where 𝜎𝑅𝑆 = Sign(sk𝑅𝑆 , (ct1, ct2, idx)). The
provider then asks the TA for a signature on the call-label and uses
these signatures to decrypt the ciphertexts and compute the hops.

Provider Accountability Protocol: Some providers may provide

wrong hops to frame others. Since the encrypted hops are anony-

mously submitted to the RS, we need a mechanism to catch the

malicious providers. Our group signature protocol allows the TA

to open any group signature and reveal the provider that signed a

message. Thus, if a trace seems malformed, the provider submits all

ciphertexts, hops, and signatures for the call retrieved from the RS

and sends it to the TA. The TA runs a Validate function that outputs
the set of faulty hops. The GM then identifies the signatures that

correspond to these hops and deanonymizes them to return the set

of providers that submitted malformed/wrong hops.

5.3 Traceback Validation
Once a provider has hops, they must assemble the hops into the

complete path. We call this step “Traceback Validation” because it

will identify the correct path or detect inconsistencies or missing

records that should be manually investigated.

We validate a traceback by inserting decrypted records into a

directed multi-graph. In a multi-graph, two nodes can be connected

by multiple edges. Each record is a graph with three nodes: 𝑃𝑖−1, 𝑃𝑖
and 𝑃𝑖+1; and two edges: 𝑃𝑖−1 → 𝑃𝑖 , and 𝑃𝑖 → 𝑃𝑖+1. A traceback is

the multi-graph union of such individual sub-graphs(hops).

Ideal Scenario: Each 𝑃𝑖 contributes a valid record for a given

call. Figure 6(Full Path) visualizes this ideal scenario. Let deg𝑖𝑛 and

deg𝑜𝑢𝑡 denotes in and out degrees respectively. The originating

provider 𝑃1 has deg𝑖𝑛 = 0 and deg𝑜𝑢𝑡 = 2. Here, one edge of deg𝑜𝑢𝑡

(denoted by solid line) indicates its assertion to 𝑃2 while the other

edge (denoted by dashed-line) indicates 𝑃2’s assertion to 𝑃1. The

terminating provider 𝑃4 has deg𝑖𝑛 = 2 and deg𝑜𝑢𝑡 = 0 for reasons

symmetrical to one provided for the originating provider. Finally,

each transit provider (𝑃2 and 𝑃3) has deg𝑖𝑛 = 2 and deg𝑜𝑢𝑡 = 2. Any

deviation from the ideal case helps us determine “faulty hops”—hops

that are conflicting.

Determining Faulty Hops: We detect faulty hops by checking

four properties formulated from the ideal scenario:

Origin invariant: A call can have only one originator. This property

holds if there is exactly one node in the directed multi-graph with

deg𝑖𝑛 = 0 and deg𝑜𝑢𝑡 ∈ {1, 2}. Otherwise, the originating record

is missing, or some 𝑃𝑖 submitted malformed records. Note that

deg𝑜𝑢𝑡 = 1 does not necessarily imply a malicious originator since

true originators will still have deg𝑜𝑢𝑡 = 1 if there is a missing record

from their downstream provider. If there is more than one node

with deg𝑜𝑢𝑡 = 2, then there are conflicting originators; in this case,

we construct different call paths for each originator.

Terminating invariant: A call can have only one terminating provider.

This property holds if there is exactly one node with deg𝑖𝑛 ∈ {1, 2}
and deg𝑜𝑢𝑡 = 0. Otherwise, the terminating record is missing, or a

𝑃𝑖 submitted malformed records. This is symmetric to the origin

invariant except that values for deg𝑖𝑛 and deg𝑜𝑢𝑡 are swapped.

Transit invariant: This property identifies all transit providers and

validates for nodes having deg𝑖𝑛 ∈ {1, 2} and deg𝑜𝑢𝑡 ∈ {1, 2}.
Connectivity invariant: This property determines if the full call path

can be recovered. It holds if there is a path between every pair of

vertices in the traceback graph.

Figure 5 presents the detailed algorithm for determining the

faulty hops from the decrypted records and the ability to reconstruct

the call path.

Traceback Robustness and Partial Deployment: In a scenario

where all parties are honest, we derive all the benefits of the scheme.

Importantly, even in partial deployment scenarios where only cer-

tain providers submit their records, our scheme can identify the call

originator under certain conditions. For example, if the originating

provider is the sole contributor for a call, the system can still suc-

cessfully identify the call origin without the contributions from any

other provider in the call path. If the second hop provider partici-

pates, our system can identify the origin even if no other provider

participates. If there are ever conflicting origin claims, we initiate a

manual investigation to identify the source and punish the dishon-

est party. If any other intermediate party participates honestly, we

can still reduce manual traceback time. With the call path recovery

algorithm, there may be cases where we can precisely identify the

bad actor. However, this is an “added bonus” and not the main goal

of the scheme. The tracing algorithm relies on a best-effort strategy,
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Figure 4: In the trace protocol, providers obtain labels, ciphertexts, and decryption authorization signatures for a call from TA.
Here, the bold text shows 𝑠𝑟𝑐 ∥𝑑𝑠𝑡 ∥ 𝑗 is not sent in plaintext but blinded as in OPRF

Validate({call-details𝑗 , call-label𝑗 , (𝑐𝑡 𝑗
0
, 𝑐𝑡

𝑗

1
), 𝜎 𝑗 , 𝜎𝑇 , hop𝑗 }hop𝑗 ∈Ctrace ): The validation algorithm proceeds as follows:

(1) Verify that call-label𝑗 corresponds to the call that is to be validated using call-details.
(2) Verify that hop𝑗 can be computed from (𝑐𝑡 𝑗

0
, 𝑐𝑡

𝑗

1
) using call-label𝑗 .

(3) Each hop𝑗 is defined as 𝑃𝑖−1 | | 𝑃𝑖 | | 𝑃𝑖+1. Create a directed multigraph G such that: G.𝑉 = {𝑃𝑘 | 𝑃𝑘 ∈ hop𝑗 ,∀hop𝑗 ∈ Ctrace}
and G.𝐸 = {{𝑃𝑖−1 → 𝑃𝑖 , 𝑃𝑖 → 𝑃𝑖+1 | ∀hop𝑗 ∈ Ctrace}}. We use {{· · ·}} to denote that G.𝐸 is a multi-set.

(4) For each 𝑣 ∈ G.𝑉 :

(a) If G.degin (𝑣) = 0, add 𝑣 to O: list of providers that claim to be originators.
(b) If G.degin (𝑣) > 0 and G.degout (𝑣) = 0, add 𝑣 to D: list of providers that claim to be terminating.
(c) Else add 𝑣 to T : list of providers that claim to be transit.

(5) If |O| = 1 and degout (𝑣) > 0, set P𝑂 = 𝑣 | 𝑣 ∈ O else do:

(a) For 𝑣 ∈ O: if G.degout (𝑣) = 2 add 𝑣 to O𝑇 (possibly true origins) else add 𝑣 to O𝐹 (possibly faulty or missing attestation)
(b) If |O𝑇 | = 1 set P𝑂 = 𝑢 | 𝑢 ∈ O𝑇 : (true origin)
(c) F𝑂 = F𝑂 ∪ O𝐹 : may require investigation from output graph

(6) If |D| = 1 and degin (𝑣) > 0, set P𝑇 = 𝑣 | 𝑣 ∈ D else do:

(a) For 𝑣 ∈ D: if G.degin (𝑣) = 2 add 𝑣 to D𝑇 else add 𝑣 to D𝐹

(b) If |D𝑇 | = 1 set P𝑇 = 𝑢 | 𝑢 ∈ D𝑇 (true terminator)
(c) F𝐷 = F𝐷 ∪ D𝐹

(7) For 𝑣 ∈ T : if G.degin (𝑣) ∉ {1, 2} and 𝐺.degout (𝑣) ∉ {1, 2} add 𝑣 to F𝑇 .
(8) If G is weakly connected, then output G.shortestPath(P𝑂 ,P𝑇 ) else G.subgraphs()
(9) Output (F𝑂 , F𝑇 , F𝐷 ), (P𝑂 , O), (P𝑇 , D), (T )

Figure 5: The Validate algorithm analyzes deviations from the ideal scenario to determine the call path and faulty sets

and we believe that societal incentives, including civil or criminal

liability, will motivate the entities to behave honestly. In Sec. 7.2,

we present an evaluation of Jäger in partial deployment.

5.4 Security of Jäger
In this section we provide informal arguments that Jäger achieves

the security properties outlined in Sec 3.2. The formal proof in the

UC framework is in Appendix C .
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Theorem 1. [Informal] Assuming the CPA security of the witness-
encryption scheme, the unforgeability of the signature scheme, the
security of the group signature scheme, the security of the OPRF pro-
tocol, and secure hash functions, Jäger achieves record confidentiality,
the privacy of individual caller, blinds network trends and provider
associations. Moreover if the TA is honest, Jäger additionally achieves
provider accountability.

Trace Authorization: Since a provider requires a signature from
the TA to decrypt the ciphertexts, and a provider needs to know

the call-details to request this signature, only authorized parties

can perform a trace successfully.

Call Confidentiality: Recall that the 𝑠𝑟𝑐, 𝑑𝑠𝑡 information of the

call is used only to compute the label. Since the computation of the

label is through an OPRF, we guarantee that the TA does not learn

the 𝑠𝑟𝑐 and 𝑑𝑠𝑡 of the call. Since the OPRF output is pseudorandom,

the label by itself will also not reveal any information about the

caller and the callee of the call.

Trade Secret Protection: Recall that each hop is encrypted and

stored at the 𝑅𝑆 . Decrypting the encrypted hop requires knowl-

edge of the labels and a signature on the call-label, information

accessible only to entities involved in the call or those accurately

guessing the source, destination, and call time. The unforgeability

property of the signature scheme ensures that an entity cannot

forge a signature on behalf of the TA, preventing unauthorized

decryption of the hops. Additionally, the CPA security of the WES

scheme safeguards the contents of these ciphertexts. As previously

described, a malicious provider might attempt to guess arbitrary

call details, create corresponding labels, and decrypt records stored

at the 𝑅𝑆 , i.e. they try to mount a grinding attack. To mitigate this

risk, we implement rate-limiting on such requests by having the

TA restrict the number of authorizations granted to each provider.

Record integrity: Since all contributed records are signed using a

group signature, and the RS verifies this signature before adding

the record to the database, we ensure that only authorized users

can contribute records.

Record Accountability: We achieve provider anonymity since

each submission to the 𝑅𝑆 does not include any identifier of the

provider. They are instead signed using the group signature scheme,

ensuring that the provider is anonymous within the group. When

a provider is misbehaving (e.g. by sending a malformed hop) the
group signature can be opened by TA thus revealing the provider

that signed the submitted hop. We note that if the TA is malicious

they may just not reveal any identity and accountability may not

be guaranteed. But even if the TA is malicious they cannot frame

an honest provider as the sender of the record.

6 Implementation
This section describes the prototype implementation of Jäger and

how we obtained CDR data to evaluate it.

6.1 Prototype Implementation
We describe a prototype implementation for each component of

Jäger, which enables us to evaluate its performance.

Traceback Authority: We implement the TA as an HTTP server

that uses BLS Signatures [15] to compute authorization signatures.

For this function, we exposed an endpoint for authorizing trace

requests. We set up our group signature scheme using short group

signatures [14] implemented by IBM’s libgroupsig [41] and ex-

posed an endpoint for opening signatures. Finally, we used the

ristretto255 elliptic curve (oblivious Python package) for our

OPRF protocol [17]. The TA exposes an API endpoint for label

generation.

Record Store: The RS is an HTTP server with a database for stor-

ing records. We use the Click-House columnar database. The RS

exposes endpoints for contribution and traceback queries.

Carrier: We implement a carrier as a process that runs the protocol

and interacts with other components in the system. For perfor-

mance, we implemented the witness encryption scheme in C++

using the BLS381 elliptic curve library[52] and wrote Python bind-

ings using Pybind11.

6.2 Data Generation
Because CDRs are data protected by US laws, they are unobtainable.

We are unaware of work that models contemporary PSTN call

records so we develop a PSTN model to algorithmically generate

data. We first generate a graph to represent the providers’s peering

relationships. We then model a social graph of telephone users and

assign users to carriers. We then generate CDRs for calls between

users. While we believe our model is reasonably accurate, in Section

7, we show that even if call volumes are significantly higher, Jäger

will be practical.

Telephone Network: We use an iterative graph generation algo-

rithm to construct a network consistent with real-world telephone

topology. We have identified three properties that a reasonable

model generator must consider:

Preferential Attachment: New carriers prioritize connecting with

larger carriers that handle a significant traffic volume, so providers

with wider coverage generally acquire more new customers. In

our model, the number of carrier connections is proportional to its

current degree.

Market fitness: Smaller providers can attract new customers but

rarely surpass larger providers’ market share. This feature enables

us to mirror real-world scenarios, such as AT&T maintaining a



higher market share even as the network evolves.

Inter-carrier agreements: Represents financial agreements, such as

mutual compensation for handling each other’s traffic, rates for

different types of traffic, and billing arrangements.

We use the Bianconi-Barabasi model [12] to achieve these proper-

ties. Our network consists of 𝑁 nodes, each labeled 𝑃𝑖 representing

a unique carrier node. The weight of an edge between any two

carrier nodes signifies the inter-carrier agreement amount, which

we use in the shortest path computation. We assume each carrier

node seeks to minimize the cost of transmitting call connections, a

notion that aligns with real-world practices.

Subscribers Network: We model subscribers’ social interactions

using a scale-free network. We create a total of 𝑆 subscribers, each

represented by a phone number in the NPA-NXX-XXXX format.

We allocate phone numbers to subscribers based on each carrier’s

market share. We constructed a Barabási-Albert [8] graph denoted

as 𝐺𝑠 = (𝑉𝑠 , 𝐸𝑠 ) for the subscribers. Since Jäger is primarily in-

terested in scenarios where the caller and the called party belong

to different carrier networks, we minimized the probability that

neighboring nodes of a given subscriber 𝑠𝑖 are on the same network

as 𝑠𝑖 .

CDR generation: Each edge in the social network 𝐺𝑠 represents

a call between two subscribers 𝑠𝑖 and 𝑠 𝑗 . For each call 𝑠𝑖𝑠 𝑗 , we

represent the call path as the shortest path between their respective

providers in the topology. Each hop within the call path represents

a CDR record.

7 Evaluation
For Jäger to succeed, runtime performance, queries, and insertions

of records need to be fast to handle the volume of call traffic being

processed daily by the network. Our prototype implementation

allows us to test its performance for each protocol phase. We con-

sider the following metrics: storage growth rate, minimum vCPUs

required, time for each protocol, and the minimum bandwidth re-

quired as shown in Table 2.

Experiment Setup: Our Experiments were run on a Linux virtual

machine with 32 vCPU and 64GB of memory. The host was a Super

Micro Server with an Intel Xeon Gold 6130, ECC DDR RAM, and

12Gbps SAS drives. In experiment 1, we benchmark individual

tasks such as label generation, record encryption and decryption,

opening signatures, signing, and verifying signatures. We executed

each process in a single thread 1,000 times to obtain the average,

minimum, maximum, and standard deviation (SD) of the runtime.

In Experiment 2, we generated a network graph with 7,000[25]

carriers and simulated 𝑅𝐶 = 10, 000 calls per second. No entity

currently has visibility into the call volumes of all carriers in the

United States. As a result, we did not find well-supported statistics

on the overall call volume in the United States. We are especially

concerned with the number of calls that transit multiple carriers,

and, of course, this figure is even less attested. Of the statistics we

found, many had no citations, did not describe their methodology,

or were otherwise suspect in accuracy. As a result, we settled on the

round number of 10,000 calls per second for the North American

phone network. This corresponds to roughly 800,000,000 calls per

day. We admit that this choice is arbitrary, but as we see later, our

Table 2: Minimum system requirements for each component
in Jäger suppose the network processes 10,000 calls per sec-
ond.

Component Storage vCPU Bandwidth
Traceback Authority

Label Generation 𝑂 (# of Providers) 4 25 Mbps

Group Management 𝑂 (# of Providers) 1 20 Mbps

Trace Authorization 𝑂 (# of Traces) 1 10 Mbps

Record Store

Process Submissions 𝑂 (# of Records) 257 800 Mbps

All Carriers

Contribution O(1) 208 800 Mbps

Table 3: Performance for protocolsmeasured inmilliseconds.

Task Mean Min Max Std
Label Generation 0.073 0.066 0.166 0.007

Contribution 4.143 3.708 5.980 0.173

Authorization 0.419 0.376 0.615 0.023

Decryption 0.847 0.780 1.064 0.039

Open 0.147 0.134 2.865 0.009

Verify Group Signature 2.310 2.118 2.865 0.098

system has substantial headroom and is also horizontally scalable.

Our evaluation in the following sections considers the TA and RS

as singletons.

7.1 Protocol Evaluation

Setup Protocol: The Setup is less than 10ms for all entities. Storing

the identity of group members (providers) at the TA grows linearly

in the number of providers.

Contribution Protocol: We measure the time and minimum sys-

tem requirements to complete the protocol for the label generation

and submission phases.

Label generation: Providers request a PRF evaluation from the TA.

Table 3 shows that a single label generation takes 0.073ms on av-

erage (SD = 0.007ms). Hence, the TA can evaluate 13,698 labels on
average on a single vCPU per second.
Bandwidth for label generation: We estimate the minimum band-

width required to generate labels between providers and the TA

over an HTTP connection from:

𝐵𝑤 = 𝑅𝑟𝑒𝑐 · (𝑆𝑟𝑒𝑞 + 𝑆𝑟𝑒𝑠 ) · (1 +𝑂ℎ𝑡𝑡𝑝 ) (1)

𝑅𝑟𝑒𝑐 is the rate at which records are generated across the net-

work, 𝑆𝑟𝑒𝑞 and 𝑆𝑟𝑒𝑠 are request size, response size, and 𝑂ℎ𝑡𝑡𝑝 addi-

tional overhead (in percentage) introduced by HTTP, respectively.

On average, calls generated by our network have 5 hops
4
, thus

𝑅𝑟𝑒𝑐 = 5 · 𝑅𝐶 . Each request payload is 32 bytes; thus, 𝑆𝑟𝑒𝑞 = 256

bits, likewise, 𝑆𝑟𝑒𝑠 = 𝑆𝑟𝑒𝑞 since the PRF is length-preserving. We

compute overhead using:

𝑂ℎ𝑡𝑡𝑝 = Overhead per Request/Batch Size (2)

We measured the average overhead of about 652 bytes per request

for the minimal headers when using HTTP/1.1. The group signature

forms a significant fraction of this overhead. The TA can handle
label-generation requests even with substantial network overhead
since 25 Mbps is vastly below nominal internet throughput.
4
ITG reports that tracebacks usually go through 4 or more hops[42]
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Figure 7: Performancemeasured inmilliseconds for insertion
and select queries as database size grows.

Record Submission: We measure the time it takes to contribute 1

CDR record. From Table 3, contributing 1 CDR takes 4.143ms on

average with a SD of 0.173ms. A provider can process 241 records

in a second on a single vCPU. At a rate of 50,000 records per second5,
a minimum of 208 vCPUs are required to encrypt all records. This
may seem high, but recall we estimated 7,000 providers, so the CPU

requirements are small in practice for providers.

Bandwidth for record submission: The record submission request

payload is 1, 900 bytes in size (15, 200 bits), comprising a label,

ciphertext, and signature. Using Equation 1, we estimate the min-

imum bandwidth for submitting records as 800 Mbps. Therefore,
with 800 Mbps the RS can handle submission requests for the entire
network.

Once the RS receives the submission request, it verifies the sig-

nature and inserts it into the database. Table 3 shows that verifying

a group signature takes 2.310ms on average with a SD of 0.098ms.

Hence, the RS can verify 432 submissions per core per second, thus
requiring a minimum of 24 vCPUs to validate contribution requests.

Record Store: Our second experiment evaluates the growth of stor-

age and how that affects querying and inserting records. As shown

in Figure 7, we observed that the time it takes to insert records into

the database is independent of the database size, averaging about

24.28ms with a SD of 1.681ms. Note that 23.28ms represents the

average time to process a single INSERT statement with 1 VALUE

row. Insertion overhead could significantly improve if multiple val-

ues are appended to a single insert statement. The RS can process
43 insert statements in a second on a single vCPU. To cover the rate
at 10,000 calls per second requires a minimum of 233 vCPUs. The
database size grows at a rate of 1.5 TB per day, roughly $100 per

day. Deployment consideration may require that records are only

retained for a given period, after which they get expunged.

Trace Protocol: We consider the Trace protocol for a single trace-

back. Label generation is the same as before. Whenever authoriza-

tion for a traceback is requested, the TA records this in the database

along with the provider. Storage grows linearly with the number

of traceback requests. To decrypt a record, we need a signature

on the label. Signing a label takes a mean time of 0.419ms with

5
For an average of 5 hops per call, 10, 000 calls per second correspond to 50, 000 CDRs

per second

an SD of 0.023ms. We measured that decrypting a single record

takes 0.847ms on average with a SD of 0.039ms. A single vCPU can
decrypt 1,180 ciphertexts per second.

ProviderAccountability Protocol: In the Provider Accountability
protocol, we determine the faulty hops from the decrypted records

as described in section 5.3. We measured the runtime for analyzing

the records and determining the faulty hops to be 0.052ms. Opening

a signature takes 0.147ms on average with a SD of 0.009ms as shown

in Table 3.

7.2 Traceback Evaluation
Throughput: We estimate the compute time for one traceback as

the sum of the following components: 1) label generation, 2) trace

authorization, 3) retrieving records from RS, and 4) decrypting

records. In Section 5.2, we generate all labels in the range L =

{tsToEpoch(𝑡𝑠∗) | ∀𝑡𝑠∗ ∈ [𝑡𝑠−𝑡max, 𝑡𝑠+𝑡max]}. Assuming 𝑡max = 10

seconds and 𝑒𝑝 is in seconds, we retrieve records for 21 labels (2 ·
𝑡𝑚𝑎𝑥 + 1). The estimated average compute time for one traceback is

0.75 seconds. Without communication latency, we can complete close
to 3.5 million tracebacks in a month, increasing the current throughput
by a multiplicative factor of 11,520. Communication latency would

reduce this number, but the result remains a significant fraction of

the current abuse.

Partial Deployment: Jäger was explicitly designed to support par-
tial deployment because of lessons learned from S/S and proposals

like RPKI to secure Internet communications. Given that both of

those systems failed to meet their goals at the current levels of

deployment, it is worth considering how Jäger might perform.

First, though, we will need to establish definitions and deploy-

ment models. We say that a traceback is successful if the Jäger

record store has at least one record that identifies the originating

hop in the call path. For this analysis, we call providers that deploy

Jäger “adopters,” and define “adoption rate” as the fraction of all

providers who are adopters. In S/S, the largest networks tended to

be the earliest adopters, and only small networks continue oper-

ating without S/S (excluding, of course, legacy networks that are

incompatible). This trend held because regulatory agencies gave

smaller networks more time to comply with deployment mandates

than larger ones. Published tracebacks and successful enforcement

actions report that the vast majority of illegal calls come from small

networks.

We used our network model from Section 6.2 to estimate trace-

back success in partial deployment. We simulate randomly dialed

robocalls originating from the smallest 𝑟% of carriers and adopters

as the largest 𝑎% of carriers. We find that if robocalls originate

from the bottom 10% of networks, with Jäger adoption by only the

largest 2% of carriers, Jäger can still successfully traceback 27% of

all robocalls. When adoption increases to 10%, which is still lower

than the current rate of adoption of S/S, traceback success leaps to

55% of robocalls.

Given that robocallers place millions or billions of calls, even

at low adoption Jäger would produce mountains of evidence that

could lead to takedown of illegal robocalling operations. Of course,

these results are likely sensitive to our model choices. Still, even

if this estimate is wrong by an order of magnitude, tracing even

a small fraction of the thousands or millions of robocalls is a vast



improvement compared to 300 per month we see today.

8 Deployment Considerations
In this section, we discuss practical deployment concerns relating

to incentives, engineering concerns, and the trace authorization

process.

Deployment Incentives: When integrating a new security man-

date into an existing system, it is essential to consider incentives.

How will a provider benefit from deploying Jäger? Eliminating bulk

illegal calls aligns with providers’ interests since these calls are

often unanswered and do not generate revenue. However, this mo-

tivation alone may not be enough. Fortunately, the S/S framework

has shown that regulatory mandates can drive widespread network

changes.

Engineering Concerns: In our discussions with practitioners, we

identified engineering concerns that, while challenging, are man-

ageable. We anticipate that carriers will face hurdles integrating

with billing systems and managing new cryptographic infrastruc-

ture. However, we anticipate that deployment will still be easier

than S/S because it involves only latency-insensitive backends. Jäger

itself will face typical site reliability engineering challenges, such

as replication and public key infrastructure issues like governance.

The industry has successfully navigated similar challenges with

S/S, so we can have confidence that these engineering concerns are

surmountable.

Rate Limiting and Authorization: Our performance evaluation

assumed that traceback authorization would be instantaneous. In

reality, there will be some processing time. Human intervention

may be required to review requests before or after they are system-

signed. In some cases, the trace authorizer could automatically

approve requests, such as requests from honeypots for calls to their

own numbers. Given that honeypots receive thousands of calls daily

[57, 58], scalable traceback will significantly enhance investigative

processes.

9 Related Work
Telecom fraud [67] is a long-standing problem [48, 49, 51] that

continues to impact carriers [50, 62, 65, 66] and subscribers [3, 59].

Most fraud schemes stem from inadequate authentication mecha-

nisms [21, 22, 60, 61, 73] and security flaws in legacy telecom signal-

ing protocols [44, 63, 75, 76]. Attempts to address these problems

through protocol enhancements [37, 67, 72] and defenses [54, 62]

have had limited success. Illegal robocalling, a form of telecom

fraud, frustrates phone users, carriers, and regulators. Over the past

decade, widespread adoption of VoIP technology has led to a surge

of scams [57, 58, 68, 72] perpetrated using robocalls. To study the op-

erational characteristics of robocallers, researchers have employed

a wide range of techniques such as CDR data mining [46, 64, 71],

machine learning [36, 45, 77], audio processing [57, 58], carrier col-

laboration [6, 7], and reputation scoring [13, 56]. Mitigation tech-

niques based on caller ID authentication [74], spam filtering [23],

call-blocking apps [5, 39, 51, 55, 70], and increased penalties [27, 28]

have been proposed. However, they have failed to significantly deter

bad actors from originating illegal robocalls.

In Dec 2019, the US Congress passed the TRACED Act [27] to

protect consumers from illegal robocalls. Consequently, the FCC

designated the Industry Traceback Group (ITG) [42] to track down

entities responsible for originating illegal robocall traffic using

traceback. Tracebacks remain invaluable in uncovering and prose-

cuting numerous illegal robocalling operations [26]. However, its

effectiveness is limited since it is a manual, iterative, and time-

consuming process. Each traceback requires cooperation among

carriers spanning multiple days to pinpoint the source of illegal

robocall traffic. Network traceback methods like packet marking

and router logging [10, 34, 35] are ineffective to traceback phone

calls [40] due to general IP traceback limitations.

Our automated traceback technique addresses these challenges

and encompasses all transit carriers. Notably, Jäger does not require

modifications to existing infrastructure, making it compatible with

other protocols.

10 Conclusion
In this paper, we described the design of Jäger, a distributed system

to facilitate automatic call traceback. Jäger facilitates the anonymous-

but-traceable submission of encrypted call records to a central

source, which after vetting from an authorizer allows traceback

only by parties with information about a call to be traced. We

demonstrate that despite the expensive cryptographic primitives

and coordination cost, the system is practical today with modest

hardware and low latency. In so doing, we show that Jäger repre-

sents a powerful new tool to combat telephone abuse.
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Functionality FTraceBack
Entities: P = ∅ is the set of carriers,M is the set of malicious carriers, 𝑇𝐴 is a traceback authority

This functionality is initialized with predicate Validate which determines if a list of records has conflicts. It takes as inputs a list of

hop = (𝑃𝑖−1∥𝑃𝑖 ∥𝑃𝑖+1) and outputs a set conflicting hop (denoted Cconflicts)
Data Structures: D is the table of records, that stores entries of the form (record-index : 𝑃𝑖 , call-details, hop)
Interface:
• Register: Upon receiving (REGISTER, 𝑃𝑖 ) from a party 𝑃𝑖 , do P = P ∪ {𝑃𝑖 } and send (REGISTER, 𝑃𝑖 ) to A.

• Contribute Call: Upon receiving (CONTRIBUTE, call-details, hop) from some carrier 𝑃𝑖 , check if 𝑃𝑖 ∈ P. If yes, store
(record-index : 𝑃𝑖 , call-details, hop) in D. Send (CONTRIBUTE, record-index) to the A. Upon receiving (CONTRIBUTE, OK)
from A, send (CONTRIBUTE, record-index) to 𝑃𝑖 . Update record-index = record-index + 1.
• Malicious Update to Database: Upon receiving (MAL-UPDATE, (del, record-index)) from A, update D \ {(record-index :
(·))}. Upon receiving (MAL-UPDATE, (add, (·) : (𝑃 𝑗 , call-details, hop))) from A, update D ∪ {(record-index :

(𝑃 𝑗 , call-details, hop))} and send record-index to A.

• Trace Call: Upon receiving (TRACE, call-details, 𝑃𝑖 ) from 𝑃𝑖 ,

(1) Retrieve all entries of the form (record-index : call-details∗, ·, ·) inD where the 𝑡𝑠∗ of call-details∗ belongs to [𝑡𝑠 −𝑚𝑎𝑥, 𝑡𝑠 +
𝑚𝑎𝑥], where𝑚𝑎𝑥 is the max size for a call and 𝑡𝑠 is the timestamp in call-details. Let Ctrace = {(record-index, hop)} for
each retrieved hop

(2) If there are no hop missing in Ctrace send the set of retrieved ({record-index}) to A. If there are hop missing,

then send (call-details, {record-index}) to A. Receive ({MAL-UPDATE, (add, record-indexA : 𝑃 𝑗 , call-detailsA , hopA )})
or (MAL-UPDATE, (del, record-index)). If 𝑃 𝑗 ∈ M, add these entries to D, else ignore these messages. Let Ctrace =

Ctrace ∪ Cmalicious, where Cmalicious = {record-indexA , hopA }.
(3) Send (ALLOW-TRACE, 𝑃𝑖 ) to 𝑇𝐴. Upon receiving (ALLOW-TRACE, 𝑃𝑖 , OK) from 𝑇𝐴, send Ctrace to 𝑃𝑖 else send ∅ to 𝑃𝑖
• Open: Upon receiving (OPEN, call-details, Ctrace) from some party 𝑃𝑖 , if 𝑇𝐴 is corrupt, send (OPEN, call-details, Ctrace) to A,

and receive (OPEN, {𝑃∗}). Else:
(1) Compute Cconflicts = Validate(Ctrace)
(2) For each hop∗ ∈ Cconflicts retrieve 𝑃∗ such that (𝑃∗, call-details, hop, ·) in D
Return (OPEN, {𝑃∗}) to the calling 𝑃𝑖

Figure 8: Private Traceback functionality

A Ideal functionality for Jäger
In this section we formalize the security properties of Jäger in the

UC framework [19]. We define an ideal functionality FTraceBack
(Figure 8) that captures the correctness and the security properties

of the Jäger system.

The FTraceBack functionality maintains a database D and pro-

vides the following interface:

• REGISTER: Enables carriers to register with the system. Since

this is public information, the identity of the carrier is leaked

to the adversary.

• CONTRIBUTE: Allows carriers to submit records to the system.

Recall that in the real world, an adversary can always learn

when a record is submitted but does not learn the contents

of the record, nor the identity of the carrier that submits

the record. Therefore, the only information that is leaked to

the adversary is the record-index which gives an indication

of what time a call record was submitted. This captures the

anonymity and the confidentiality guarantees.

• MAL-UPDATE: Allows the adversary to delete or add records

to the database.

• TRACE: Enables carriers to retrieve the hops relevant to a

specific call. All the hops that are currently in the database

along with any hop that the adversary wants to append are

returned to the carrier. Before sending these hops to the

carrier, the functionality sends ALLOW-TRACE command to

the𝑇𝐴, and only if the𝑇𝐴 responds with (ALLOW-TRACE, OK)
are these hops sent to the carrier. This captures the trace
authorization requirement and ensures that a carrier cannot

request a trace too many times and hence rate-limits their
requests.

• OPEN: Allows a carrier to deanonymize the sender of hops
that are malformed or conflicting. If the 𝑇𝐴 is honest, the

functionality runs a Validate predicate to determine the ma-

licious/conflicting hops and returns the identities of the cor-

responding carriers. On the other hand if the𝑇𝐴 is malicious,

the adversary is allowed to return the identities of any of

the carriers. This captures the property that accountability
is guaranteed as long as the 𝑇𝐴 is honest.

B The Jäger protocol
We need the following ingredients:

(1) Group signatures as defined in [16]

(2) An OPRF scheme

(3) Witness Encryption scheme for signatures.

In the presentation of Jäger below we will instantiate the OPRF



Client(𝑥, pkOPRF ) Server(𝑘 )
𝑟 ← Z𝑞
𝑎 = 𝐻1 (𝑥 )𝑟

𝑎

𝑏 = 𝑎𝑘

𝑏

𝑐 = 𝑏1/𝑟

Verification :

𝑒 (pkOPRF, 𝐻1 (𝑥 ) )
?

= 𝑒 (𝑔, 𝑐 )
Output :

𝐻2 (pkOPRF, 𝐻1 (𝑥 ), 𝑐 )

Figure 9: OPRF Scheme of [43] where pkOPRF = 𝑔𝑘 and is
previously announced by the server. All groups are pairing-
friendly.

Enc((vk𝑇 , call-label),𝑚): The encryption algorithm

proceeds as follows:

• Sample 𝑟1 ← Z𝑞 and 𝑟2 ← G𝑇 .
• Set 𝑐1 := 𝑔

𝑟1
0

• Compute ℎ := 𝐻𝛼 (𝑟2).
• Compute 𝑐2 := (𝑒 (vk𝑇 , 𝐻𝛽 (call-label))𝑟1 · 𝑟2) and
𝑐3 := (ℎ +𝑚)
• Return 𝑐 := (𝑐1, 𝑐2, 𝑐3).

Dec(𝜎𝑇 , 𝑐): The decryption algorithm proceeds as follows:

• Parse 𝑐 := (𝑐1, 𝑐2, 𝑐3).
• Compute 𝑟 := 𝑐2 · 𝑒 (𝑐1, 𝜎𝑇 )−1.
• Compute ℎ := 𝐻𝛼 (𝑟 ).
• Return𝑚 := 𝑐3 − ℎ.

Figure 10: Witness encryption based on BLS signatures from
[47], here 𝐻𝛼 and 𝐻𝛽 are hash functions modeled as random
oracles.

scheme using the 2HashDH OPRF scheme of Jarecki et. al. [43] and

the witness encryption scheme presented in [47][24].

Jäger consists of four protocols: Setup, Contribution, Trace, and
Provider Accountability protocols, which we describe in detail below.

Before we describe the protocol we present details of the OPRF

scheme of [43] in Figure 9 and the Witness Encryption scheme of

[47] in Figure 10.

B.1 Setup
The Traceback Authority 𝑇𝐴 does:

(1) Generate BLS signature keys (sk𝑇 , vk𝑇 ) ← Sign.KGen(1𝜆)
and (sk𝑅, vk𝑅) ← Sign.KGen(1𝜆)

(2) Generate OPRF key 𝑘 ← Z𝑞 and announce the correspond-

ing public key pkOPRF = 𝑔𝑘

(3) Run the GKGen algorithm of the group signature scheme

and announce (gpk, info0) which are the group manager

public key and the initial group information.

(4) The 𝑇𝐴 initializes a counter rl-ctr𝑖 corresponding to each 𝑃𝑖 .

Each provider 𝑃𝑖 does:

(1) Run the interactive joining protocol Joinwith𝑇𝐴 and receive

gsk𝑖
(2) Generate signing keys (sk𝑖 , vk𝑖 ) ← Sign.KGen(1𝜆) and an-

nounce vk𝑖 .
The Record Store 𝑅𝑆 does:

(1) Initialize the database D
(2) Generate signing keys (sk𝑅𝑆 , vk𝑅𝑆 ) ← Sign.KGen(1𝜆) and

announce vk𝑅𝑆

B.2 Contribution
Each provider 𝑃𝑖 with input (𝑠𝑟𝑐 ∥𝑑𝑠𝑡 ∥𝑡𝑠) and hop = (𝑃𝑖−1∥𝑃𝑖 ∥𝑃𝑖+1)
does:

(1) Compute ep = tsToEpoch(𝑡𝑠) and run the OPRF protocol

with 𝑇𝐴 using inputs call-details = (𝑠𝑟𝑐 ∥𝑑𝑠𝑡 ∥ep) as follows:
(a) Pick 𝑟 ← Z𝑞 and compute 𝑎 = 𝐻1 (call-details)𝑟 and send

𝑎 to 𝑇𝐴

(b) The 𝑇𝐴 computes 𝑏 = 𝑎𝑘 and sends it back to 𝑃𝑖
(c) 𝑃𝑖 checks the following pairing equation to verify the

OPRFwas evaluated correctly: 𝑒 (pkOPRF, 𝐻1 (call-details)) =
𝑒 (𝑔,𝑏1/𝑟 )6.

(d) Output call-label = 𝐻2 (pkOPRF, call-details, 𝑏1/𝑟 )
(2) The provider then encrypts the hop as follows:

(a) Sample a random key key← {0, 1}𝜆
(b) Encrypt key as as ct1 = WE.Enc((vk𝑇 , call-label), key)
(c) Compute ct2 = 𝐻3 (call-details∥key) ⊕ hop

(3) The provider signs the ciphertexts and the 𝐻 (call-label) us-
ing the group signature scheme:𝜎 = Sign(gsk𝑖 , (ct1, ct2, 𝐻 (call-label)))
and sends (𝐻 (call-label), (ct1, ct), 𝜎) to 𝑅𝑆

The Record Store 𝑅𝑆 upon receiving (𝐻 (call-label), (ct1, ct), 𝜎)
does the following:

(1) Check Verify(gpk, (𝐻 (call-label), (ct1, ct)), 𝜎) = 1.

(2) If yes, write (𝐻 (call-label), (ct1, ct), 𝜎) to the database. Else

ignore the message.

B.3 Trace
Each provider 𝑃𝑖 with input (𝑠𝑟𝑐 ∥𝑑𝑠𝑡 ∥𝑡𝑠) does:

(1) For 𝑡𝑠∗ ∈ [𝑡𝑠−𝑡max, 𝑡𝑠+𝑡max] compute ep∗ = tsToEpoch(𝑡𝑠∗)
(2) For each ep∗ compute call-label∗ as abovewith inputs call-details∗

= (𝑠𝑟𝑐 ∥𝑑𝑠𝑡 ∥ep∗) by running the OPRF protocol with the 𝑇𝐴

(3) Request a signature on idx = 𝐻 (call-label∗) from 𝑇𝐴.

(4) The 𝑇𝐴 checks if rl-ctr𝑖 > 𝑇 , if yes, reject the request, else

the 𝑇𝐴 computes 𝜎𝑅 = Sign(sk𝑅, idx) and sends it back to

𝑃𝑖 .

(5) Send (idx∗, 𝜎𝑅) to 𝑅𝑆 and receive the corresponding records

back ((idx∗, ct∗
1
, ct∗

2
, 𝜎∗), 𝜎𝑅𝑆 ) if they exist.

(6) Verify Vf (vk𝑅𝑆 , ((idx∗, ct∗1, ct
∗
2
, 𝜎∗), 𝜎𝑅𝑆 )) = 1. If not, reject.

6
The groups are pairing friendly, and hence we can verify the correctness of the OPRF

via pairing equations [43]



(7) Request a signature on each call-label∗ from 𝑇𝐴 by sending

𝜎𝑖 = Sign(sk𝑖 , call-label∗) to the 𝑇𝐴. The 𝑇𝐴 compute 𝜎𝑇 =

Sign(sk𝑇 , call-label∗) and sends it to 𝑃𝑖 .

(8) Decrypt the ciphertexts as follows:

(a) Compute key∗ = WE.Dec(𝜎𝑇 , ct∗1)
(b) Compute hop∗ = 𝐻3 (call-details∗∥key∗) ⊕ ct2

(9) Append hop∗ to Ctrace

B.4 Provider Accountability
If a hop∗ is malformed or conflicts with another record, the provider

𝑃𝑖 can request the 𝑇𝐴 to open the corresponding signature to

deanonymize that provider and hold them accountable.

(1) 𝑃𝑖 sends call-details, call-label∗, ct∗
1
, ct∗

2
, 𝜎∗), the list of {hop}

to the 𝑇𝐴

(2) The𝑇𝐴 runs Validate algorithm to determine if the provider

is misbehaving and needs to be deanonymized.

(3) The 𝑇𝐴 computes 𝑃∗
𝑗
= Open(gsk, (call-label∗, ct∗

1
, ct∗

2
, 𝜎∗))

and returns 𝑃∗
𝑗

C Formal Proofs of Security of Jäger
In this section we will present the formal proofs of security. We

will consider three cases of corruption: (1) Only a subset of the

providers are corrupt (2) The record store 𝑅𝑆 is corrupt and can

collude with any of the providers and (3) the traceback authority

𝑇𝐴 is corrupt and can collude with any of the providers.

For completeness we first show a simulator where no parties are

corrupt.

Case 0: No entities are corrupt:

Setup: Simulate the Traceback Authority:

(1) Generate BLS signature keys (sk𝑇 , vk𝑇 ) ← Sign.KGen(1𝜆)
and (sk𝑅, vk𝑅) ← Sign.KGen(1𝜆)

(2) Generate OPRF key 𝑘 ← Z𝑞 and announce the correspond-

ing public key pkOPRF = 𝑔𝑘

(3) Run the GKGen algorithm of the group signature scheme

and announce (gpk, info0) which are the group manager

public key and the initial group information.

Simulate honest providers: Upon receiving (REGISTER, 𝑃𝑖 ) from
FTraceBack: Generate signing keys (sk𝑖 , vk𝑖 ) ← Sign.KGen(1𝜆) and
announce vk𝑖 .

Contribution:
Simulating honest contributions: Upon receiving (CONTRIBUTE,

record-index) from FTraceBack, just store (record-index, (·)) in a

database D and return (CONTRIBUTE, OK) to FTraceBack.
Trace:

Honest trace request:

(1) Upon receiving (TRACE, record-index) from FTraceBack, send
∅ back to FTraceBack

(2) Upon receiving (ALLOW-TRACE, 𝑃𝑖 ) from FTraceBack, send (
ALLOW-TRACE, 𝑃𝑖 , OK) back to FTraceBack.

C.1 Case 1: Only a subset of the providers are
corrupt and the TA and RS are honest

To prove UC security we need to show that there exists a simulator

that produces a transcript in the ideal world that is indistinguishable

from the real world. Below we present the simulator for the case

when only a subset of the providers are malicious and all other

entities are honest.

Setup: Simulate the Traceback Authority:

(1) Generate BLS signature keys (sk𝑇 , vk𝑇 ) ← Sign.KGen(1𝜆)
and (sk𝑅, vk𝑅) ← Sign.KGen(1𝜆)

(2) Generate OPRF key 𝑘 ← Z𝑞 and announce the correspond-

ing public key pkOPRF = 𝑔𝑘

(3) Run the GKGen algorithm of the group signature scheme

and announce (gpk, info0) which are the group manager

public key and the initial group information.

Simulate honest providers: Upon receiving (REGISTER, 𝑃𝑖 ) from
FTraceBack: Generate signing keys (sk𝑖 , vk𝑖 ) ← Sign.KGen(1𝜆) and
announce vk𝑖 .

Malicious provider 𝑃 𝑗 : Simulate the interactive joining protocol

Join with 𝑃 𝑗 , and send (REGISTER, 𝑃𝑖 ) to FTraceBack.
Contribution:

Simulating honest contributions: The simulator does not need

to simulate interactions between honest providers and 𝑅𝑆 and 𝑇𝐴,

since this is not in the view of the malicious providers. Therefore,

upon receiving (CONTRIBUTE, record-index) from FTraceBack, just
store (record-index, (·)) in a databaseD and return (CONTRIBUTE, OK)
to FTraceBack.

Simulating random oracle invocations:

(1) Upon receiving input 𝑥 for random oracle 𝐻1, check if (𝑥,𝑦)
exists in Q1. If yes return 𝑦, else sample a random 𝑦, store

(𝑥,𝑦) ∈ Q1 and return 𝑦.

(2) Upon receiving input 𝑥 for random oracle 𝐻2, check if (𝑥,𝑦)
exists in Q2. If yes return 𝑦, else sample a random 𝑦, store

(𝑥,𝑦) ∈ Q2 and return 𝑦.

(3) Upon receiving input 𝑥 for random oracle 𝐻3, check if (𝑥,𝑦)
exists in Q3. If yes return 𝑦, else sample a random 𝑦, store

(𝑥,𝑦) ∈ Q3 and return 𝑦.

Simulating malicious contributions:

(1) Upon receiving 𝑎 on behalf of 𝑇𝐴 from the adversary, com-

pute 𝑏 = 𝑎𝑘 and send it back to the A.

(2) Upon receiving (call-label, ct1, ct2, 𝜎) from A:

(a) Check (𝑥, call-label) exists in𝑄2. If not, abort withROFail2.
(b) Else parse 𝑥 as (pkOPRF, call-details, 𝑏∗)
(c) Check that (call-details, 𝑦) exists in 𝑄1. If not, abort with

ROFail1.
(d) Check that 𝑒 (pkOPRF, 𝑦) = 𝑒 (𝑔,𝑏∗). If not, abort with

PRFFail
(e) Check ((call-details∥key∗), 𝑧) exists in Q3. If not, abort

with ROFail3.
(f) Else compute hop∗ = 𝑧 ⊕ ct2

(3) If all checks pass, compute 𝑃∗
𝑗
= Open(gsk𝑖 , (call-label, ct1, ct2, 𝜎)).

If 𝑃∗
𝑗
corresponds to that of an honest party, abort with

GroupSigFail.
(4) Send (CONTRIBUTE, call-details, hop) on behalf of 𝑃∗

𝑗
toFTraceBack.

(5) Receive (CONTRIBUTE, record-index) fromFTraceBack and store
(record-index, (𝑃 𝑗 , call-details, hop)) in D.



Trace: We consider two cases: 1) an honest trace request 2) a mali-

cious trace request

(1) Honest trace request:

(a) Upon receiving (TRACE, record-index) fromFTraceBack, send
∅ back to FTraceBack

(b) Upon receiving (ALLOW-TRACE, 𝑃𝑖 ) from FTraceBack, send
(ALLOW-TRACE, 𝑃𝑖 , OK) back to FTraceBack.

(2) Malicious trace request:

(a) Upon receiving (call-label∗, 𝜎∗) from A (on behalf of 𝑃∗
𝑗
):

(i) if 𝜎∗ verifies under a honest party 𝑃𝑖 ’s vk abort with

SigFail
(ii) If call-label∗, (·) exists in the list of ciphertexts, send

(call-label∗, (ct1, ct2, 𝜎)) to A. Else:

(iii) Check (𝑥, call-label) exists in𝑄2. If not, abort withROFail2.
(iv) Else parse 𝑥 as (pkOPRF, call-details, 𝑏∗)
(v) Check that (call-details, 𝑦) exists in 𝑄1. If not, abort

with ROFail1.
(vi) Check that 𝑒 (pkOPRF, 𝑦) = 𝑒 (𝑔,𝑏∗). If not, abort with

PRFFail
(b) Send (TRACE, call-details, 𝑃∗

𝑗
) on behalf of 𝑃∗

𝑗
to FTraceBack

(c) Receive ({record-index}) from FTraceBack. If any of the

record-index correspond to that of a malicious contribu-

tion, send {record-index, 𝑃 𝑗 , call-details, hop} toFTraceBack.
(d) Upon receiving ALLOW-TRACE from FTraceBack, check that

requesting provider has not requested too many records

and send (ALLOW-TRACE, OK) to FTraceBack.
(e) Receive Ctrace from FTraceBack.
(f) Encrypt each of the hop using the corresponding call-label

and vk𝑇 in the following way:

(i) Sample a random key key← {0, 1}𝜆
(ii) Compute ct1 = WE.Enc((call-label, vk𝑇 ), key)
(iii) Sample a random ct2. Set 𝐻3 (call-details∥key) = ct2 ⊕

hop
(g) Using the group signature scheme, compute 𝜎 on behalf

of 𝑃𝑖 , where 𝑃𝑖 is the honest sender of the record.

(h) Compute 𝜎𝑅𝑆 = Sign((call-label∗, ct∗
1
, ct∗

2
, 𝜎∗))

(i) Send the (call-label∗, ct∗
1
, ct∗

2
, 𝜎∗), 𝜎𝑅𝑆 that correspond to

call-label∗ to the adversary.

Provider Accountability: Upon receiving Open request from A
for a particular record, (call-label∗, ct∗

1
, ct∗

2
, 𝜎∗), 𝜎𝑅𝑆 , check that 𝜎𝑅𝑆

is a signature that was computed by the simulator, if not abort

with SigFail
2
. Else send OPEN, call-details, Ctrace to FTraceBack and

output whatever FTraceBack returns.
Proof By Hybrids: Now to prove that the simulated world and the

real world are indistinguishable we proceed via a sequence of hy-

brids, starting from the real world until we reach the ideal world.We

show that each of these hybrids are indistinguishable and therefore

the real world and the simulated world are indistinguishable.

Hybrid
0
This is the real world protocol

Hybrid
1
This hybrid is identical to the previous hybrid except that

the simulator may abort with GroupSigFail. By the non-

frameability property of the group signature scheme, the

simulator aborts with negligible probability and therefore

this hybrid is indistinguishable from the previous one.

Hybrid
2
This hybrid is identical to the previous hybrid except that the

simulator may abort with ROFail1. Since we use a random

oracle and require the adversary to use the RO, the probabil-

ity of this event occurring is negligible, and therefore this

hybrid is indistinguishable from the previous one.

Hybrid
3
This hybrid is identical to the previous hybrid except that the

simulator may abort with ROFail2.Since we use a random
oracle and require the adversary to use the RO, the probabil-

ity of this event occurring is negligible, and therefore this

hybrid is indistinguishable from the previous one.

Hybrid
4
This hybrid is identical to the previous hybrid except that the

simulator may abort with ROFail3. Since we use a random
oracle and require the adversary to use the RO, the probabil-

ity of this event occurring is negligible, and therefore this

hybrid is indistinguishable from the previous one.

Hybrid
5
This hybrid is identical to the previous hybrid except that the

simulator may abort with SigFail. Since we use unforgeable
signatures, this event occurs with negligible probability and

therefore the two hybrids are indistinguishable.

Hybrid
6
This hybrid is identical to the previous hybrid except that the

simulator may abort with SigFail
2
. Since we use unforgeable

signatures, this event occurs with negligible probability and

therefore the two hybrids are indistinguishable.

Since this hybrid is identical to the simulated world, we have

shown that the real world and ideal world are indistinguishable,

and that concludes the proof of security for the case when only a

subset of carriers are corrupt.

C.2 Case 2: TA and subset of providers are
corrupt, and RS is honest

We present the simulator for this case below:

Setup: The adversary A runs the algorithms of the 𝑇𝐴. Receive

vk𝑇 , pkOPRF, (gpk, info0) from A
Simulate honest providers: Upon receiving (REGISTER, 𝑃𝑖 ) from

FTraceBack:
(1) Generate signing keys (sk𝑖 , vk𝑖 ) ← Sign.KGen(1𝜆) and an-

nounce vk𝑖 .
(2) Interact with A to run the Join protocol and learn gsk𝑖 .
Malicious provider 𝑃 𝑗 : Upon receiving (UpdateGroup, 𝑃∗

𝑗
) from

A on behalf of 𝑇𝐴, send (REGISTER, 𝑃∗
𝑗
) to FTraceBack.

Contribution:
Simulating honest contributions: Note that the simulator only

simulates the computation of the label, since that is the only inter-

action with the adversary. Since the 𝑅𝑆 is honest the simulator does

not need to compute the ciphertexts or interact with A. Therefore,

upon receiving (CONTRIBUTE, record-index) from FTraceBack:
(1) Compute a label as follows:

(a) Sample random 𝑟 ← Z𝑞 and compute 𝑎 = 𝐻1 (0)𝑟 and

send 𝑎 to A on behalf of 𝑇𝐴.

(b) Receive 𝑏 from A.

(c) Check that 𝑒 (pkOPRF, 𝐻1 (0)) = 𝑒 (𝑔,𝑏1/𝑟 )
(d) Output call-label = 𝐻2 (pkOPRF, 0, 𝑏1/𝑟 ) and store (record-index, call-label).

Simulating random oracle invocations:

(1) Upon receiving input 𝑥 for random oracle 𝐻1, check if (𝑥,𝑦)
exists in Q1. If yes return 𝑦, else sample a random 𝑦, store

(𝑥,𝑦) ∈ Q1 and return 𝑦.



(2) Upon receiving input 𝑥 for random oracle 𝐻2, check if (𝑥,𝑦)
exists in Q2. If yes return 𝑦, else sample a random 𝑦, store

(𝑥,𝑦) ∈ Q2 and return 𝑦.

(3) Upon receiving input 𝑥 for random oracle 𝐻3, check if (𝑥,𝑦)
exists in Q3. If yes return 𝑦, else sample a random 𝑦, store

(𝑥,𝑦) ∈ Q3 and return 𝑦.

Simulating malicious contributions:

(1) Upon receiving (call-label, ct1, ct2, 𝜎) from A:

(a) Check (𝑥, call-label) exists in𝑄2. If not, abort withROFail2.
(b) Else parse 𝑥 as (pkOPRF, call-details, 𝑏∗)
(c) Check that (call-details, 𝑦) exists in 𝑄1. If not, abort with

ROFail1.
(d) Check that 𝑒 (pkOPRF, 𝑦) = 𝑒 (𝑔,𝑏∗). If not, abort with

PRFFail
(e) Check ((call-details∥key∗), 𝑧) exists in Q3. If not, abort

with ROFail3.
(f) Else compute hop∗ = 𝑧 ⊕ ct2

(2) Send (CONTRIBUTE, call-details, hop) on behalf ofA toFTraceBack.
(3) Receive (CONTRIBUTE, record-index) fromFTraceBack and store
(record-index, (A, call-details, hop)) in D.

Trace: We consider two cases: 1) an honest trace request 2) a mali-

cious trace request

(1) Honest trace request: Upon receiving (TRACE, record-index)
from FTraceBack

(a) If (record-index, (A, call-details, hop)) ∈ D
(i) Sample random 𝑟 ← Z𝑞 and compute𝑎 = 𝐻1 (call-details)𝑟

and send 𝑎 to A
(ii) Receive 𝑏 from A.

(iii) Check that 𝑒 (pkOPRF, 𝐻1 (call-details)) = 𝑒 (𝑔,𝑏1/𝑟 ).
(iv) Output call-label∗ = 𝐻2 (pkOPRF, call-details, 𝑏1/𝑟 )
(v) Request A for a signature on call-label∗.
(vi) If no signature received send ∅ to FTraceBack. And upon

receiving (ALLOW-TRACE, 𝑃𝑖 ) fromFTraceBack, return (ALLOW-TRACE,⊥)
(vii) Else Decrypt ct1, ct2 corresponding to call-label∗ if it ex-

ists and send record-index,A, call-details, hop toFTraceBack.
And upon receiving (ALLOW-TRACE, 𝑃𝑖 ) from FTraceBack,
return (ALLOW-TRACE, OK)

(viii) If no ciphertexts exist corresponding to this call-label∗

abort with failure VerifyOPRFFail.
(b) If (record-index, (A, call-details, hop)) ∉ D,

(i) simulate the computation of a label as in honest contri-

bution

(ii) Sample a random string call-label∗ .
(iii) Request A for a signature on call-label∗. If a signature

is received, send (ALLOW-TRACE, OK) to FTraceBack, else
send (ALLOW-TRACE,⊥) upon receiving (ALLOW-TRACE, 𝑃𝑖 )
from FTraceBack.

(2) Malicious trace request:

(a) Upon receiving (call-label∗, 𝜎𝑖 , 𝜎𝑅) from A (on behalf of

𝑃∗
𝑗
):

(i) If 𝜎𝑖 corresponds to that of an honest party, abort with

SigFail.
(ii) If call-label∗, (·) exists in the list of ciphertexts, send

(call-label∗, (ct1, ct2, 𝜎)) to A. Else:

(iii) Check (𝑥, call-label) exists in𝑄2. If not, abort withROFail2.

(iv) Else parse 𝑥 as (pkOPRF, call-details, 𝑏∗)
(v) Check that (call-details, 𝑦) exists in 𝑄1. If not, abort

with ROFail1.
(vi) Check that 𝑒 (pkOPRF, 𝑦) = 𝑒 (𝑔,𝑏∗). If not, abort with

PRFFail
(b) Send (TRACE, call-details, 𝑃∗

𝑗
) on behalf of 𝑃∗

𝑗
to FTraceBack

(c) Receive ({record-index}) from FTraceBack. If any of the

record-index correspond to that of a malicious contribu-

tion, send {record-index, 𝑃 𝑗 , call-details, hop} toFTraceBack.
(d) Upon receiving ALLOW-TRACE from FTraceBack, send
(ALLOW-TRACE, OK) to FTraceBack.

(e) Receive Ctrace from FTraceBack.
(f) Encrypt each of the hop using the corresponding call-label

and vk𝑇 in the following way:

(i) Sample a random key key← {0, 1}𝜆
(ii) Compute ct1 = WE.Enc((call-label, vk𝑇 ), key)
(iii) Sample a random ct2. Set 𝐻3 (call-details∥key) = ct2 ⊕

hop
(g) Using the group signature scheme, compute 𝜎 on behalf

of 𝑃𝑖 , where 𝑃𝑖 is the honest sender of the record.

(h) Compute 𝜎𝑅𝑆 = Sign((call-label∗, ct∗
1
, ct∗

2
, 𝜎∗))

(i) Send the (call-label∗, ct∗
1
, ct∗

2
, 𝜎∗), 𝜎𝑅𝑆 that correspond to

call-label∗ to the adversary.

ProviderAccountability: Upon receiving (OPEN, call-details, Ctrace)
request from FTraceBack send Open request to A and output what-

ever A returns.

(1) If the adversary opens a signature submitted by a malicious

party as an honest party’s identity abort with FrameFail.
(2) If the adversary opens a record (call-label∗, ct∗

1
, ct∗

2
, 𝜎∗), 𝜎𝑅𝑆

where 𝜎𝑅𝑆 was not computed by the simulator abort with

SigFail
2
.

Proof By Hybrids: Now to prove that the simulated world and the

real world are indistinguishable we proceed via a sequence of hy-

brids, starting from the real world until we reach the ideal world.We

show that each of these hybrids are indistinguishable and therefore

the real world and the simulated world are indistinguishable.

Hybrid
0
This is the real world protocol

Hybrid
1
This hybrid is identical to the previous hybrid except that

the simulator may abort with GroupSigFail. By the non-

frameability property of the group signature scheme, the

simulator aborts with negligible probability and therefore

this hybrid is indistinguishable from the previous one.

Hybrid
2
This hybrid is identical to the previous hybrid except that the

simulator may abort with ROFail1. Since we use a random
oracle and require the adversary to use the RO, the probabil-

ity of this event occurring is negligible, and therefore this

hybrid is indistinguishable from the previous one.

Hybrid
3
This hybrid is identical to the previous hybrid except that the

simulator may abort with ROFail2.Since we use a random
oracle and require the adversary to use the RO, the probabil-

ity of this event occurring is negligible, and therefore this

hybrid is indistinguishable from the previous one.

Hybrid
4
This hybrid is identical to the previous hybrid except that the

simulator may abort with ROFail3. Since we use a random



oracle and require the adversary to use the RO, the probabil-

ity of this event occurring is negligible, and therefore this

hybrid is indistinguishable from the previous one.

Hybrid
5
This hybrid is identical to the previous hybrid except that the

simulator may abort with SigFail. Since we use unforgeable
signatures, this event occurs with negligible probability and

therefore the two hybrids are indistinguishable.

Hybrid
6
This hybrid is identical to the previous hybrid except that

the simulator may abort with VerifyOPRFFail. Since we use
a verifiable OPRF scheme this occurs with negligible proba-

bility.

Hybrid
7
This hybrid is identical to the previous hybrid except that

the simulator simulates the OPRF calls using 0 as input in-

stead of the call-details. By the obliviousness property of

the underlying OPRF scheme, these two hybrids are indis-

tinguishable.

Hybrid
8
This hybrid is identical to the previous hybrid except that the

simulator may abort with SigFail
2
. Since we use unforgeable

signatures, this event occurs with negligible probability and

therefore the two hybrids are indistinguishable.

Since this hybrid is identical to the simulated world, we have

shown that the real world and ideal world are indistinguishable,

and that concludes the proof of security for the case when only a

subset of carriers are corrupt.

C.3 Case 3: RS and a subset of the providers are
corrupt, and TA is honest

Setup: Simulate the Traceback Authority:

(1) Generate BLS signature keys (sk𝑇 , vk𝑇 ) ← Sign.KGen(1𝜆)
and (sk𝑅, vk𝑅) ← Sign.KGen(1𝜆)

(2) Generate OPRF key 𝑘 ← Z𝑞 and announce the correspond-

ing public key pkOPRF = 𝑔𝑘

(3) Run the GKGen algorithm of the group signature scheme

and announce (gpk, info0) which are the group manager

public key and the initial group information.

Simulate honest providers: Upon receiving (REGISTER, 𝑃𝑖 ) from
FTraceBack: Generate signing keys (sk𝑖 , vk𝑖 ) ← Sign.KGen(1𝜆) and
announce vk𝑖 .

Malicious provider 𝑃 𝑗 : Simulate the interactive joining protocol

Join with 𝑃 𝑗 , and send (REGISTER, 𝑃𝑖 ) to FTraceBack.
Contribution:

Simulating honest contributions: Upon receiving (CONTRIBUTE, record-index)
from FTraceBack,

(1) Sample a random call-label
(2) Send a random key and compute ct1 = WE.Enc((vk𝑇 , call-label), key)
(3) Sample a random string ct2
(4) Compute a group signature 𝜎 on behalf of some honest party

𝑃𝑖
(5) Send (ct1, ct2, call-label, 𝜎) to 𝑅𝑆 and send (CONTRIBUTE, OK)

to FTraceBack. Store (record-index, call-label, ct1, ct2).
Simulating random oracle invocations:

(1) Upon receiving input 𝑥 for random oracle 𝐻1, check if (𝑥,𝑦)
exists in Q1. If yes return 𝑦, else sample a random 𝑦, store

(𝑥,𝑦) ∈ Q1 and return 𝑦.

(2) Upon receiving input 𝑥 for random oracle 𝐻2, check if (𝑥,𝑦)
exists in Q2. If yes return 𝑦, else sample a random 𝑦, store

(𝑥,𝑦) ∈ Q2 and return 𝑦.

(3) Upon receiving input 𝑥 for random oracle 𝐻3, check if (𝑥,𝑦)
exists in Q3. If yes return 𝑦, else sample a random 𝑦, store

(𝑥,𝑦) ∈ Q3 and return 𝑦.

Simulating malicious contributions: Note that since the 𝑅𝑆 is

corrupt, the simulator only needs to simulate the label generation.

(1) Upon receiving 𝑎 on behalf of 𝑇𝐴 from the adversary, com-

pute 𝑏 = 𝑎𝑘 and send it back to the A.

Trace: We consider two cases: 1) an honest trace request 2) a mali-

cious trace request

(1) Honest trace request:

(a) Upon receiving (TRACE, record-index, call-details) fromFTraceBack,
(i) Retrieve call-label that corresponds to record-index if it

exists.

(ii) Send (call-label, 𝜎𝑅) to𝑅𝑆 and receive (call-label, ct1, ct2, 𝜎).
If no such recordwas received, send (MAL-UPDATE, (del, record-index)
to FTraceBack)

(iii) If no call-label exists, compute call-label = 𝐻2 (pkOPRF,
call-details, 𝐻1 (call-details)𝑘 ) and send call-label to A.

If any ct1, ct2, call-label, 𝜎 received, first check if 𝜎 corre-

sponds to that of an honest party, if this is the case abort

the simulation with GroupSigFail else decrypt the ci-
phertexts to retrieve the hop and send (MAL-UPDATE, (add,
(𝑃∗

𝑗
, call-details, hop))) to FTraceBack. Upon receiving

record-index, send record-index, 𝑃∗
𝑗
, call-details, hop to

FTraceBack.
(b) Upon receiving (ALLOW-TRACE, 𝑃𝑖 ) from FTraceBack, send
(ALLOW-TRACE, 𝑃𝑖 , OK) back to FTraceBack.

(2) Malicious trace request:

(a) Upon receiving a query for 𝐻3 on call-details∥key, send
(TRACE, call-details, 𝑃𝑖 ) toFTraceBack and receive backCtrace =
{record-index, hop}.

(b) Retrieve (ct1, ct2, call-label, 𝜎) that correspond to record-index
and check that this is the same key that was encrypted in

ct1. If yes, compute 𝑧 = ct2 ⊕ hop and send 𝑧 in response

and store ((call-details∥key), 𝑧) in Q3. If not, sample a

random 𝑧 ← {0, 1}𝜆 and send 𝑧 in response.

Provider Accountability: Upon receiving Open request from A
for a particular record, send OPEN, call-details, Ctrace to FTraceBack
and output whatever FTraceBack returns.
Proof By Hybrids: Now to prove that the simulated world and the

real world are indistinguishable we proceed via a sequence of hy-

brids, starting from the real world until we reach the ideal world.We

show that each of these hybrids are indistinguishable and therefore

the real world and the simulated world are indistinguishable.

Hybrid
0
This is the real world protocol

Hybrid
1
This hybrid is identical to the previous hybrid except that

the simulator may abort with GroupSigFail. By the non-

frameability property of the group signature scheme, the

simulator aborts with negligible probability and therefore

this hybrid is indistinguishable from the previous one.

Hybrid
2
This hybrid is identical to the previous hybrid except that the

simulator may abort with ROFail1. Since we use a random



oracle and require the adversary to use the RO, the probabil-

ity of this event occurring is negligible, and therefore this

hybrid is indistinguishable from the previous one.

Hybrid
3
This hybrid is identical to the previous hybrid except that the

simulator may abort with ROFail2.Since we use a random
oracle and require the adversary to use the RO, the probabil-

ity of this event occurring is negligible, and therefore this

hybrid is indistinguishable from the previous one.

Hybrid
4
This hybrid is identical to the previous hybrid except that the

simulator may abort with ROFail3. Since we use a random
oracle and require the adversary to use the RO, the probabil-

ity of this event occurring is negligible, and therefore this

hybrid is indistinguishable from the previous one.

Hybrid
5
This hybrid is identical to the previous hybrid except that the

simulator may abort with SigFail. Since we use unforgeable
signatures, this event occurs with negligible probability and

therefore the two hybrids are indistinguishable.

Hybrid
6
This hybrid is identical to the previous hybrid except that the

simulator simulates the honest contributions by sampling

a random call-label. By the pseudorandomness property of

the underlying OPRF scheme, these two hybrids are indis-

tinguishable.

Hybrid
7
This hybrid is identical to the previous hybrid except that the

ciphertext ct2 is a randomly sampled string. By the perfect

security of the stream cipher (OTP), these two hybrids are

indistinguishable.

Hybrid
8
This hybrid is identical to the previous hybrid except that

the group signature corresponds to that of a random honest

party. By the anonymity guarantees of the underlying group

signature scheme, these two hybrids are indistinguishable.

Since this hybrid is identical to the simulated world, we have

shown that the real world and ideal world are indistinguishable,

and that concludes the proof of security for the case when only a

subset of carriers are corrupt.

D Artifact Appendix
D.1 Abstract
We developed a prototype of the Jäger system and conducted a

thorough performance evaluation. The Jäger artifact is composed

of four key components: Group Membership Management, Label

Generation, Trace Authorization, and Record Storage. Each of these

components was containerized using Docker, and we orchestrated

them together with Docker Compose. Additionally, we integrated

auxiliary services, including a web-based GUI, to facilitate interac-

tion with the database.

We generated a dataset of Call Detail Records and evaluated

Jäger’s performance. Our experimental results indicate that Jäger

incurs minimal computational and bandwidth overhead per call,

with these costs scaling linearly with the increase in call volume.

D.2 Description & Requirements
The Jäger prototype comprises four integral components:

Membership Management: The Group Manager (GM) oversees

membership management. This component enables the GM to issue

new group membership keys or revoke existing ones, and it also

facilitates the tracing of traitors. Within our implementation, the

TA assumes the role of the GM.

Label Generation: Label generation is controlled by the Label

Manager (LM). The LM collaborates with providers to evaluate

pseudorandom functions using the Oblivious Pseudorandom Func-

tion protocol. In our system, the TA also fulfills the role of the

LM.

Trace Authorization: This component is responsible for generat-

ing authorization signatures required to decrypt ciphertexts. The

TA acts as the Trace Authorizer in our implementation.

Record Storage: The Record Storage component stores ciphertexts

and provides the results of match trace queries.

All the above components are implemented in Python. However, for

performance optimization, we implemented the witness encryption

in C++ and created Python bindings to integrate the library into

our prototype.

D.2.1 Security, privacy, and ethical concerns. None

D.2.2 How to access. We have archived the witness en-

cryption and the Jäger prototype into a zip file, which

is publicly accessible on Zenodo at the following link:

https://zenodo.org/doi/10.5281/zenodo.12733869. Additionally, we

maintain an active version of the artifact in our GitHub reposi-

tories. The source code for Witness Encryption can be found at

https://github.com/wspr-ncsu/BLS-Witness-Encryption, while the

Jäger prototype is available at https://github.com/wspr-ncsu/jaeger.

D.2.3 Hardware dependencies. Running Jäger does not necessitate

any specific hardware requirements. However, to achieve results

comparable to those presented in the paper, our experiments were

conducted on a Linux virtual machine equipped with 32 vCPUs and

64 GB of memory. The underlying host was a Super Micro Server

featuring an Intel Xeon Gold 6130 processor, ECC DDR RAM, and

12 Gbps SAS drives.

D.2.4 Software dependencies. For ease of setup, we recommend

configuring the project usingDocker. If you prefer not to use Docker,

our repositories provide detailed instructions on how to set up the

project without it. For the remainder of this artifact appendix, we

will focus exclusively on the setup and execution of experiments

using Docker.

D.2.5 Benchmarks. None

D.3 Set Up
D.3.1 Installation. You need to install the appropriate version of

Docker based on your operating system. If your Docker installation

does not include the Docker Compose plugin, be sure to install

Docker Compose separately. Additionally, download the Jäger pro-

totype source code from either the GitHub repository or Zenodo.

We have published the Jäger Docker image on Docker Hub as

kofidahmed/jager. If this image is not available, navigate to the

root directory and build the Jäger Docker image using the following

command:

docker build -t kofidahmed/jager .

https://zenodo.org/doi/10.5281/zenodo.12733869
https://github.com/wspr-ncsu/BLS-Witness-Encryption
https://github.com/wspr-ncsu/jaeger


Note that the -t option does not necessarily need to be

kofidahmed/jager. We use kofidahmed/jager to align with the

image on dockerhub.

D.3.2 Basic test. Generate secret keys for label generation, group
master and public keys for group management, as well as private

and public keys for BLS signatures and witness encryption by run-

ning the following command:

docker run \
-v $(pwd):/app \
--rm kofidahmed/jager \
python keygen.py -a

The -a option instructs the script to generate all necessary keys.

If you only need to generate keys for specific components, use

the following options: -lm for label generation, -gm for group

management, and -ta for trace authorization/witness encryp-

tion. After running the command, verify that the .env and

membership-keys.json files have been created and that the vari-

ables within are populated with the appropriate keys.

D.4 Evaluation Workflow
D.4.1 Major claims.
(C1): The average runtime for the following operations are as

follows: Label generation takes 0.073 ms, the contribution

protocol takes 4.143 ms, trace authorization takes 0.419 ms,

decryption takes 0.847 ms, opening a signature takes 0.147

ms, and verifying a group signature takes 2.310 ms. Experi-

ment (E1) substantiates these performance metrics.

D.4.2 Experiments.
(E1): Benchmark Jäger operations in Table 3.

Preparation: Run the Docker Compose command to start

the services, and then log in to the Docker container by

executing:

docker compose up -d
docker exec -it jager-exp bash

Execution: To benchmark the operations, run the following

command:

python benchmarks.py -a
This will display the results on the console and create a

results folder inside the project root.
Results: The file results/bench.csv con-

tains a summary of the benchmarks, while

results/index-timings.csv records the individ-

ual runs. We used results/index-timings.csv to

determine the mean, min, max, and standard de-

viations. To aggregate the benchmark results from

results/index-timings.csv, as shown in Table 3 (in the

paper), run python aggregate-benchmark.py. This script
generates a CSV file results/bench-summary.csv with

the aggregated results.

(E2): Determine Bandwidth, Storage Growth, and Query Perfor-

mance as illustrated in Fig. 7.

Preparation: Data generation

(1) Run Docker Compose to start the services, and log in to

the Docker container as demonstrated in E1.

(2) Generate telephone and social network data by running

the command: python datagen.py -n 100 -s 10000 -c
-y. The -n option specifies the number of carriers, -s spec-
ifies the number of subscribers, -c determines whether

CDRs should be generated, and -y skips all prompts. Note

that in the paper, -n is set to 7000 and -s is set to 300M.

(3) View the Generated Dataset: We will connect to the Click-

House database using a web browser. Ensure that your

browser has network access to both ports 5521 and 8123.

We have added a UI service that allows you to connect

to the database. Visit http://localhost:5521 in your

browser.

– Enter http://localhost:8123 as the ClickHouse URL,
default as the Username, and secret as the Password,
then click the Submit button. Once successful, click the

Go back to the home page link.
– On the home page, select Jager in the database field,

which will load the tables. You can then click on any

table to view its Details, Schema, or preview rows.

– If you prefer to run your own SQL queries, click on the

new file icon/button with the orange background. Type

select * from jager.raw_cdrs limit 10; in the

query field and click the Run Query button.
Execution: To run the contributions protocol, execute the

command: python run-contribution.py -b 3 -r 100.
The -b option specifies the number of batches, which is the

number of times you wish to run the contribution experi-

ment (it defaults to 1). After each batch, database stats are

measured and stored in the results folder. The -r option is

required and specifies the number of records per batch.

Results: The results are saved in results/db_stats.csv
and results/queries.csv. To generate the fetch

and insert query performance graph shown in Fig.

7 from the results in results/queries.csv, run

python plot-db-stats.py. This creates a PNG file

at results/query_performance.png.
(E3): Run a Traceback (Optional)

Preparation: Start the Docker services and log in

to the Docker container as described in E1. Visit

http://localhost:8123 in your browser, and execute

the SQL command select src, dst, ts from
jager.raw_cdrs where status = 1;. Refer to the E2

preparation section for instructions on executing the SQL

query. The results from this query are the calls whose ci-

phertexts have been submitted to the RS.

Execution: Run the following command: python
run-trace.py -s src -d dst -t ts. Replace src, dst,
and ts with the values from any row in the query results

obtained in the preparation step above.

Results: This command will:

– Generate call labels within the [𝑡𝑠 − 𝑡max, 𝑡𝑠 + 𝑡max] range
– Request authorization signatures from the TA

– Retrieve ciphertexts from the RS

– Decrypt and analyze the records to determine the origin

and call path.

– Display the results to your console.



D.5 Notes on Reusability
Our implementation includes Docker services defined in the

compose.yml file. Once the compose-up command is running, the

following services are exposed via http://localhost:{PORT}:

• The Group Management server runs on 9990. The imple-

mentation is defined in app-gm.py.
• The Label Generation server runs on 9991. The implementa-

tion is defined in app-lm.py.

• The Trace Authorization server runs on 9992. The imple-

mentation is defined in app-ta.py.
• The Record Store server runs on 9993. The implementation

is defined in app-rs.py.

For more information on the commands available for customizing

our implementation, please refer to our GitHub repository.

D.6 Version
Based on the LaTeX template for Artifact Evaluation V20220926.
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